Skip to main content
Log in

Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Isolated somatic embryos from petiole-derived callus cultures ofVitis rupestris Scheele have been employed in experiments on genetic transformation. Co-cultivation of somatic embryos during embryogenesis induction withAgrobacterium tumefaciens strain LBA4404, which contains the plasmid pBI121 carrying the neomycin phosphotranspherase and theβ-glucuronidase genes, produced transformed cellular lines capable of recurrent somatic embryogenesis. Precocious selection for high levels of kanamycin (100 mgl-1) was an important part of our transformation protocol. Transformed lines still have strongβ-glucuronidase expression as well as stable insertion of the marker genes after 3 years of in-vitro culture, during which they have maintained their capacity to organize secondary embryos and to regenerate transgenic plants with an agreeable efficiency (13%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baribault TJ, Skene KGM, Steele Scott N (1989) Genetic transformation of grapevine cells. Plant Cell Rep 8:137–140

    Google Scholar 

  • Baribault TJ, Skene KGM, Cain PA, Steele Scott N (1990) Transgenic grapevines: regeneration of shoots expressingβ-glucuronidase. J Exp Bot 41:1045–1049

    Google Scholar 

  • Barlass M, Skene KGM (1979) In-vitro propagation of grapevine (Vitis vinifera L.) from fragmented shoot apex. Vitis 17:335–340

    Google Scholar 

  • Barlass M, Skene KGM (1980) Studies on the fragmented shoot apex of grapevine. II. Factors affecting growth and differentiation in-vitro. J Exp Bot 31:489–495

    Google Scholar 

  • Berres R, Tinland B, Malgarini-Clog E, Walter B (1992) Transformation ofVitis tissue by different strains ofAgrobacterium tumefaciens containing the T-6b gene. Plant Cell Rep 11:192–195

    Google Scholar 

  • Bevan M (1984) BinaryAgrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Google Scholar 

  • Bouquet A, Piganeau B, Lamaison M (1982) Influence du génotype sur la production de cals, d'embryoides et de plantes entières par culture d'anthères in-vitro dans le genreVitis. Compt Rend Acad Sci Paris 295:569–574

    Google Scholar 

  • Cheng ZM, Reisch BL (1989) Shoot regeneration from petioles and leaves ofVitisxlabruscana “Catawba”. Plant Cell Rep 8:403–406

    Google Scholar 

  • Clog E, Bass P, Walter B (1990) plant regeneration by organogenesis inVitis rootstock species. Plant Cell Rep 8:726–728

    Google Scholar 

  • Colby S, Meredith CP (1990) Kanamycin sensitivity of cultured tissues ofVitis. Plant Cell Rep 9:237–240

    Google Scholar 

  • Colby S, Juncosa A, Meredith CP (1991) Cellular differences inAgrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hort Sci 116:356–361

    Google Scholar 

  • Gray DJ (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev Biol 25:1173–1178

    Google Scholar 

  • Gribaudo I, Schubert A (1990) Grapevine root transformation withAgrobacterium rhizogenes. Vitis, special issue: 412–418

  • Guellac V, David C, Branchard M, Tempé J (1990)Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue Org Cult 20:211–215

    Google Scholar 

  • Hébert D, Kikkert JR, Smith FD, Reisch B (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep 12:585–589

    Google Scholar 

  • Hemstad PR, Reisch BI (1985) In vitro production of galls induced byAgrobacterium tumefaciens andAgrobacterium rhizogenes onVitis andRubus. J Plant Physiol 120:9–17

    Google Scholar 

  • Hirabayashi T, Kozaki I, Akihama T. (1976) In-vitro differentiation of shoots from anther callus inVitis. Hort Sci 11:511–512

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan M (1987) GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Google Scholar 

  • Krul WR, Worley JF (1977) Formation of adventitious embryos in callus cultures of “Seyval”, a french hybrid grape. J Am Soc Hort Sci 102:360–363

    Google Scholar 

  • Lippincott BB, Lippincott JA (1969) Bacterial attachment to a specific wound site as an essential stage in tumour initiation byAgrobacterium tumefaciens. J Bacteriol 97:620–628

    Google Scholar 

  • Martinelli L, Bragagna P, Poletti V, Scienza A (1993) Somatic embryogenesis from leaf- and petiole-derived callus ofVitis rupestris. Plant Cell Rep 12:207–210

    Google Scholar 

  • Matsuta N, Hirabayashi T (1989) Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.). Plant Cell Rep 7:684–687

    Google Scholar 

  • Mauro MCl, Nef C, Fallot J (1986) Stimulation of somatic embryogenesis and plant regeneration from anther culture ofVitis vinifera cv Cabernet Sauvignon. Plant Cell Rep 5:377–380

    Google Scholar 

  • Mooney PA, Goodwin PB (1991) Adherence ofAgrobacterium tumefaciens to the cells of wheat embryos. Plant Cell Tissue Org Cult 25:199–208

    Google Scholar 

  • Monnier M, Faure O, Sigogneau A (1990) Somatic embryogenesis inVitis. Bull Soc Bot Fr 137, Actual Bot 3/4:35–44

    Google Scholar 

  • Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet Sauvignon) by apomixis in-vitro. J Exp Bot 27:1022–1030

    Google Scholar 

  • Mullins MG, Tang AFC, Facciotti D (1990)Agrobacterium-mediated genetic transformation of grapevines: transgenic plants ofVitis rupestris Scheele and buds ofVitis vinifera L. Bio/Technol 8:1041–1045

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Google Scholar 

  • Rajasekaran K, Mullins MG (1979) Embryo and plantlets from cultured anthers of hybrid grapevines. J Exp Bot 30:399–407

    Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Google Scholar 

  • Stamp JA, Meredith CP (1988 a) Proliferative somatic embryogenesis from zygotic embryos of grapevine. J Am Soc Hort Sci 113:941–945

    Google Scholar 

  • Stamp JA, Meredith CP (1988 b) Somatic embryogenesis from leaves and anthers of grapevine. Sci Hort 35:235–250

    Google Scholar 

  • Stamp JA, Colby M, Meredith CP (1990) Improved shoot organogenesis from leaves of grape. J Am Soc Hort Sci 115:1038–1042

    Google Scholar 

  • Vilaplana M, Mullins M (1989) Regeneration of grapevines (Vitis spp.) in-vitro: formation of adventitious buds on hypocotyls and cotyledons of somatic embryos. J Plant Physiol 134:413–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, L., Mandolino, G. Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theoret. Appl. Genetics 88, 621–628 (1994). https://doi.org/10.1007/BF01253963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01253963

Keywords

Navigation