Skip to main content
Log in

Expression of a dispersal trait in a guild of mites colonizing transient habitats

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Dispersal as a means of escape from deteriorating habitats is of particular ecological relevance for organisms such as certain astigmatic mites that colonize habitats which vary unpredictably in space and time. The mites meet these ecological challenges by a facultative dispersal morph, the heteromorphic deutonymph, also called hypopus. The appearance or absence of hypopodes in natural populations is attributable to two fundamentally different, albeit interacting, causes. Genetic polymorphism for the propensity to induce a hypopus provides for heritable variation within the population and allows selection to favor or eliminate certain genotypes. The genotypic composition of a population reflects selection forces previously acting on the population. But it holds no predictive power. Rather, it adapts the population to cope with unpredictably varying living conditions because it ensures instantaneous fit of certain genotypes of the population (those displaying hypopus-free development) to favorable (moist) environmental conditions, and others (those expressing a hypopus) to detrimental (dry) conditions. In contrast, environmentally cued inducibility allows mites to anticipate food quality inasmuch as it allows each genotype of the population to adjust its development rapidly to impending adversity or benefit. Inducibility occurs by means of a developmental switching mechanism and leads either to a developmental pathway with a hypopus or else one without. The expression of a hypopus depends on interacting genetic and environmental (trophic) factors. High levels of additive genetic variation combine with considerable genetic-trophical interaction (comprising a threshold for phenotypic expression of the trait) to control hypopus induction. The results are consistent with a variable threshold whose level depends on diet quality. Different trophic conditions set the threshold at different points along the genetic scale resulting in different proportions of hypopus-forming and directly developing individuals within the population. The threshold, therefore, converts the concealed continuous genetic variation underlying the trait into a discontinuous response of the mite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthold, P. (1988) Evolutionary aspects of migratory behavior in European warblers.J. Evol. Biol. 1 195–209.

    Google Scholar 

  • Berthold, P. (1991) Genetic control of migratory behaviour in birds.Trends Ecol. Evolut. 6 254–7.

    Google Scholar 

  • Berthold, P., Wiltschko, W., Miltenberg, H. and Querner, U. (1990) Genetic transmission of migratory behavior into a nonmigratory bird population.Experientia 46 107–8.

    Google Scholar 

  • Böttner, W. (1990) Untersuchungen zur Induktion des Hypopusstadiums bei der MilbeAcarus farris (Oudemans, 1905). Diplom-thesis, Institut für Angewandte Zoologie, Freie Universität Berlin.

  • Chmielewski, W. (1971) Morphology, biology and ecology ofCarpoglyphus lactis (L., 1758) (Glycyphagidae, Acarina).Prace Naukowe Instytutu Ochrony Roslin 13 63–166.

    Google Scholar 

  • Chmielewski, W. (1973) A study on the influence of some ecological factors on the hypopus formation of stored product mites. InProceedings of the 3rd International Congress of Acarology, Prague, Czechoslovakia, 1971 (M. Daniel and B. Rosicky, eds) pp. 357–63. W. Junk, The Hague and Academia Publishing House of the Czechoslovak Academy of Sciences, Prague.

    Google Scholar 

  • Chmielewski, W. (1977) Formation and importance of hypopus stage in the life of mites belonging to the superfamily Acaroidea.Prace Naukowe Instytutu Ochrony Roslin 19 5–94.

    Google Scholar 

  • Corente, Ch. (1991) Getreideprodukte als trophische Faktoren für die Hypopus—Induktion des VorratsschädlingsLepidoglyphus destructor (Schrank) (Acari, Astigmata, Glycyphagidae). Diplom-thesis, Institut für Angewandte Zoologie, Freie Universität Berlin.

  • Cunnington, A.M. (1984) Resistance of the grain miteAcarus siro L. (Acarina: Acaridae) to unfavourable physical conditions beyond the limits of its development.Agric. Ecosyst. Environ. 11, 319–39.

    Google Scholar 

  • den Boer, P.J. (1968) Spreading the risk and stabilization of animal numbers.Acta Biotheor. 18, 165–94.

    Google Scholar 

  • Falconer, D.S. (1989)Introduction to Quantitative Genetics 3rd edn. Longman, London and Wiley, New York.

    Google Scholar 

  • Fleurat-Lessard, F. (1975) Mise au point sur les acariens des pruneaux. Conditions de développement et de propagation desCarpoglyphus lactis L. (Acarida, Glycyphagidae).Rev. Zool. Agric. Pathol. Vég. 74, 121–38.

    Google Scholar 

  • Gibbs, H.C. (1986) Hypobiosis in parasitic nematodes — an update.Adv. Parasitol. 25, 129–73.

    Google Scholar 

  • Griffiths, D.A. (1966) Nutrition as a factor influencing hypopus formation in theAcarus siro species complex (Acarina: Acaridae).J. Stored Prod. Res. 1, 325–40.

    Google Scholar 

  • Griffiths, D.A. (1969) The influence of dietary factors on hypopus formation inAcarus immobilis Griffiths (Acari, Acaridae). InProceedings of the 2nd International Congress of Acarology, Sutton Bonington, England, 1967 (G.O. Evans, ed.) pp. 419–32. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Harrison, R.G. (1980) Dispersal polymorphism in insects.Annu. Rev. Ecol. Syst. 11, 95–118.

    Google Scholar 

  • Hartl, D.L. and Clark, A.G. (1989)Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hazel, W.D. and West, D.A. (1982) Pupal colour dimorphism swallowtail butterflies as a threshold trait: selection inEurytides marcellus (Cramer).Heredity 49, 295–301.

    Google Scholar 

  • Hedrick, P.W. (1983)Genetics of Populations. Science Books International, Boston and Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • Houck, M.A. and O'Connor, B.M. (1991) Ecological and evolutionary significance of phoresy in the Astigmata.Annu. Rev. Entomol. 36, 611–36.

    Google Scholar 

  • Knülle, W. (1963) Untersuchungen über den Einfluβ von Raumfeuchte, Temperatur und Lagerhöhe auf die Vermilbung von Trockenpflaumen.Z. Ang. Entomol. 52, 275–85.

    Google Scholar 

  • Knülle, W. (1984) Water vapour uptake in mites and insects: an ecophysiological and evolutionary perspective. InAcarology VI, Vol. 1 (D.A. Griffiths and C.E. Bowman, eds) pp. 71–82. Ellis Horwood, Chichester.

    Google Scholar 

  • Knülle, W. (1987) Genetic variability and ecological adaptability of hypopus formation in a stored product mite.Exp. Appl. Acarol. 3, 21–32.

    Google Scholar 

  • Knülle, W. (1991) Genetic and environmental determinants of hypopus duration in the stored product miteLepidoglyphus destructor.Exp. Appl. Acarol. 10, 231–58.

    Google Scholar 

  • Lawohnus, H. (1984) Induktion und Termination des Hypopus stadiums bei Populationen vonGlycyphagus destructor (Schrank, 1981) (Astigmata: Glycyphagidae) unterschiedlicher Standorte. Diplom-thesis. Institut für Angewandte Zoologie, Freie Universität Berlin.

  • Mayr, E. (1963)Populations, Species, and Evolution. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Messina, F.J. (1990) Alternative life-histories inCallosobruchus maculatus: environmental and genetic bases. InBruchids and Legumes: Economics, Ecology and Coevolution. (K. Fujii, A.M.R. Gatehouse, C.D. Johnson, R. Mitchell and T. Yoshida, eds) pp. 303–15. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Naumann, M. (1986) Nahrungsart und Nahrungsqualität als Regulativ für die Inzidenz des Hypopusstadiums bei der HausmilbeGlycyphagus domesticus (De Geer 1778). Diplom-thesis, Institut für Angewandte Zoologie, Freie Universität Berlin.

  • Oboussier, H. (1939) Beiträge zur Biologie und Anatomie der Wohnungsmilben.Z. ang. Entomol. 26, 253–96.

    Google Scholar 

  • Parkinson, C.L. (1990) Population increase and damage by three species of mites on wheat at 20°C and two humidities.Exp. Appl. Acarol. 8, 179–93.

    Google Scholar 

  • Roff, D.A. (1986) The evolution of wing dimorphism in insects.Evolution 40, 1009–20.

    Google Scholar 

  • Schneider, A. (1992) Ökologische Untersuchungen zur Induktion und Termination des Hypopusstadiums beiAcarus immobilis Griffiths (Acari, Astigmata, Acaridae). Diplom-thesis, Institut für Angewandte Zoologie, Freie Universität Berlin.

  • Sims, S.R. (1983) The genetic and environmental basis of pupal colour dimorphism inPapilio zelicaon (Lepidoptera: Papilionidae).Heredity 50, 159–68.

    Google Scholar 

  • Stearns, S.C. (1976) Life history tactics: a review of the ideas.Q. Rev. Biol. 51, 3–47.

    Google Scholar 

  • Stern, C. (1958) Selection for subthreshold differences and the origin of pseudoexogenous adaptations.Am. Nat. 92, 313–16.

    Google Scholar 

  • Takafuji, A., So, P.-M. and Tsuno, N. (1991) Inter-and intra-population variations in diapause attribute of the two-spotted spider mite,Tetranychus urticae Koch, in Japan.Res. Popul. Ecol. 33, 331–44.

    Google Scholar 

  • Tauber, C.A. and Tauber, M.J. (1987) Inheritance of seasonal cycles inChrysoperla (Insecta: Neuroptera).Genet. Res. Cam. 49, 215–23.

    Google Scholar 

  • Tauber, M.J., Tauber, C.A. and Masaki, S. (1986)Seasonal Adaptations of Insects. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Treat, A.E. (1975)Mites of Moths and Butterflies. Comstock Publishing Associates, Ithaca and London.

    Google Scholar 

  • Vitzthum, H. (1940) Die Deutonymphe vonCarpoglyphus lactis (L. 1763) (Acari, Tyroglyphidae).Zool. Anz. 129, 197–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knülle, W. Expression of a dispersal trait in a guild of mites colonizing transient habitats. Evol Ecol 9, 341–353 (1995). https://doi.org/10.1007/BF01237758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237758

Keywords

Navigation