Skip to main content
Log in

Fruit to flower ratios and trade-offs in size and number

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Hermaphroditic flowering plants commonly produce many more flowers than fruits. To interpret this observation, I suggest an explanation based on trade-offs occurring between the size and the number of flowers and fruits that mature when resources are limiting. I make this suggestion concrete with the aid of a phenotypic model analysed using the ESS approach. The model includes resource allocations to male and female reproductive structures at the time of flowering and to fruit maturation. The formulation allows for non-linear relations between opportunities for fertility gain on the one hand and flower and fruit size and number on the other. Results of the model indicate that fewer fruits will be matured than flowers produced, even in the absence of previously suggested factors such as pollinator limitation and bet-hedging in the face of environmental variability. Model results emphasize the distinction between flower versus inflorescence contributions to male and female reproductive success. Analysis also shows that the fruit to flower ratio in hermaphroditic plants will be lower than that in female plants, in accord with broad taxonomic surveys. Finally, results obtained lead to empirically testable predictions about the relationship between flower size, fruit size and the fruit to flower ratio. Methods to test these predictions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ayre, D. J. and Whelan, R. J. (1989) Factors controlling fruit set in hermaphroditic plants: studies with the Australian Proteaceae.Trends Ecol. Evol. 4, 267–72.

    Google Scholar 

  • Bawa, K. S. (1980) Evolution of dioecy in flowering plants.Ann. Rev. Ecol. Syst. 11, 15–39.

    Google Scholar 

  • Bawa, K. S. and Opler, P. A. (1975) Dioecism in tropical forest trees.Evolution 29, 167–79.

    Google Scholar 

  • Bell, G. (1985) On the function of flowers.Proc. R. Soc. Lond., B 224, 223–65.

    Google Scholar 

  • Brunet, J. (1992) Sex allocation in hermaphroditic plants.Trends Ecol. Evol. 7, 79–84.

    Google Scholar 

  • Calvo, R. N. and Horvitz, C. C. (1990) Pollinator limitation, cost of reproduction, and fitness in plants: a transition-matrix demographic approach.Am. Nat. 136, 499–516.

    Google Scholar 

  • Charlesworth, B. and Charlesworth, D. (1978) A model for the evolution of dioecy and gynodioecy.Am. Nat. 112, 975–97.

    Google Scholar 

  • Charlesworth, D. (1989) Evolution of low female fertility in plants: pollen limitation, resource allocation, and genetic load.Trends Ecol. Evol. 4, 289–92.

    Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1981) Allocation of resources to male and female functions in hermaphrodites.Biol. J. Linn. Soc. 15, 57–74.

    Google Scholar 

  • Charlesworth, D. and Morgan, M. T. (1991) Allocation of resources to sex functions in flowering plants.Phil. Trans. R. Soc. Lond. B 332, 91–102.

    Google Scholar 

  • Charnov, E. L. (1979) Simultaneous hermaphroditism and sexual selection.Proc. Natl Acad. Sci., USA 76, 2480–4.

    Google Scholar 

  • Charnov, E. L. (1982)The Theory of Sex Allocation. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Charnov, E. L., Maynard Smith, J. and Bull, J. J. (1976) Why be an hermaphrodite?Nature 263, 125–6.

    Google Scholar 

  • Cohen, D. and Dukas, R. (1990) The optimal number of female flowers and the fruits-to-flowers ratio in plants under pollination and resource limitations.Am. Nat. 135, 218–41.

    Google Scholar 

  • Couvet, D., Henry, J.-P. and Gouyon, P.-H. (1985) Sexual selection in hermaphroditic plants: the case of gynodioecy.Am. Nat. 126, 294–9.

    Google Scholar 

  • Ehrlén, J. (1991) Why do plants produce surplus flowers? A reserve-ovary model.Am. Nat. 138, 918–33.

    Google Scholar 

  • Fisher, R. A. (1930)The Genetical Theory of Natural Selection. Dover Publications, New York, USA.

    Google Scholar 

  • Frank, S. A. (1987) Individual and population sex allocation patterns.Theore. Pop. Biol. 31 47–74.

    Google Scholar 

  • Gill, P. E., Murray, W. and Wright, M. H. (1981)Practical Optimization. Academic Press, New York, USA.

    Google Scholar 

  • Givnish, T. J. (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms.Evolution,34 959–72.

    Google Scholar 

  • Haig, D. and Westoby, M. (1988) On limits to seed production.Am. Nat. 131 757–9.

    Google Scholar 

  • Janzen, D. H. (1971) Seed predation by animals.Ann. Rev. Ecol. Syst. 2 465–92.

    Google Scholar 

  • Kozlowski, J. and Stearns, S. C. (1989) Hypotheses for the production of excess zygotes: models of bethedging and selective abortion.Evolution 43 1369–77.

    Google Scholar 

  • Lloyd, D. G. (1975) Theoretical sex ratios of dioecious and gynodioecious angiosperms.Heredity,32 11–34.

    Google Scholar 

  • Lloyd, D. G. (1977) Genetic and phenotypic models of natural selection.J. Theore. Biol. 69 543–60.

    Google Scholar 

  • Lloyd, D. G. (1980) Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session.New Phytol. 86 69–79.

    Google Scholar 

  • Lloyd, D. G. (1983) Evolutionarily stable sex ratios and sex allocations.J. Theore. Biol. 105 525–39.

    Google Scholar 

  • Lloyd, D. G. (1984) Gender allocation in outcrossing cosexual plants. InPerspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds), pp. 277–300. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lloyd, D. G. (1987a) Allocations to pollen, seeds and pollination mechanisms in self-fertilizing plants.Funct. Ecol. 1 83–9.

    Google Scholar 

  • Lloyd, D. G. (1987b) Benefits and costs of biparental and uniparental reproduction in plants. InThe Evolution of Sex: An Examination of Current Ideas (B. Levin and R. Michod, eds), pp. 233–52. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Lloyd, D. G. (1987c) A general principle for the allocation of limited resources.Evol. Ecol. 2 175–87.

    Google Scholar 

  • Lloyd, D. G. (1987d) Selection of offspring size at independence and other size-versus-number strategies.Am. Nat. 129 800–17.

    Google Scholar 

  • Macior, L. W. (1970) The pollination ecology ofPedicularis in Colorado.Am. J. Bot. 57 716–28.

    Google Scholar 

  • Macior, L. W. (1973) The pollination ecology ofPedicularis on Mount Rainier.Am. J. Bot. 60 863–71.

    Google Scholar 

  • Macior, L. W. (1975) The pollination ecology ofPedicularis (Scrophulariaceae) in the Yukon territory.Am. J. Bot. 62 1065–72.

    Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Morgan, M. T. (1992) The evolution of traits influencing male and female fertility in outcrossing plants.Am. Nat. 139 1022–51.

    Google Scholar 

  • Queller, D. C. (1983) Sexual selection in a hermaphroditic plant.Nature 305 706–7.

    Google Scholar 

  • Schoen, D. J. and Dubuc, M. (1990) The evolution of inflorescence size and number: a gamete-packaging strategy in plants.Am. Nat. 135 841–57.

    Google Scholar 

  • Seger, J. and Brockmann, H. J. (1987) What is bet-hedging? InOxford Surveys in Evolutionary Biology (P. H. Harvey and L. Partridge, eds), pp. 182–211. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Smith, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number of offspring.Am. Nat. 108 499–506.

    Google Scholar 

  • Spalik, K. (1990) On evolution of andromonoecy and ‘overproduction’ of flowers: a resource allocation model.Biol. J. Linn. Soc. 42 325–36.

    Google Scholar 

  • Stephenson, A. G. (1981) Flower and fruit abortion: proximate causes and ultimate function.Ann. Rev. Ecol. Syst. 12 253–79.

    Google Scholar 

  • Sutherland, S. (1986a) Floral sex ratios, fruit-set, and resource allocation in plants.Ecology 67 991–1001.

    Google Scholar 

  • Sutherland, S. (1986b) Patterns of fruit-set: what controls fruit-flower ratio in plants?Evolution 40 117–28.

    Google Scholar 

  • Sutherland, S. and Delph, L. F. (1984) On the importance of male fitness in plants: patterns of fruit set.Ecology 65 1093–104.

    Google Scholar 

  • Walker, B. A. and Whelan, R. J. (1991) Can andromonoecy explain low fruit: flower ratios in the Proteaceae?Biol. J. Linn. Soc. 44 41–6.

    Google Scholar 

  • Willson, M. F. (1979) Sexual selection in plants.Am. Nat. 113 770–90.

    Google Scholar 

  • Willson, M. F. and Price, P. W. (1977) The evolution of inflorescence size inAsclepias (Asclepiadaceae).Evolution 31 495–511.

    Google Scholar 

  • Willson, M. F. and Rathcke, B. J. (1974) Adaptive design of the floral display inAsclepias syriaca L.Am. Midl. Nat. 92 47–57.

    Google Scholar 

  • Wolfram Research, Inc. (1991)Mathematica. Wolfram Research, Inc., Champaign, IL, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, M. Fruit to flower ratios and trade-offs in size and number. Evol Ecol 7, 219–232 (1993). https://doi.org/10.1007/BF01237740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237740

Keywords

Navigation