Skip to main content
Log in

Synaptic organization of type 2 catecholamine amacrine cells in the rhesus monkey retina

  • Published:
Journal of Neurocytology

Summary

Two types of amacrine cell immunoreactive for tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway, are present in the retina of the rhesus monkey,Macaca mulatta. The well-known dopaminergic, or type 1 catecholamine amacrine cells have relatively large cell bodies almost exclusively in the inner nuclear layer with processes that densely arborize in the outermost stratum of the inner plexiform layer and fine, radially-oriented fibres in the inner nuclear layer. Type 2 catecholamine amacrine cells, in contrast, have smaller cell bodies in the inner nuclear layer, the inner plexiform layer and the ganglion cell layer, and have sparsely-branching processes ramifying in the centre of the inner plexiform layer. Although type 2 catecholamine cells are more numerous than type 1 catecholamine amacrines, type 2 cells contain less than one-third the amount of tyrosine hydrolase as the type 1 cells. Electron microscopy of retinal tissue immunoreacted for tyrosine hydrolase by the peroxidase-antiperoxidase method revealed synaptic input from amacrine cells at conventional synapses, and bipolar cells at ribbon synapses onto the type 2 catecholamine amacrine cells. Curiously, although the synaptic input is comparatively easily found, the output synapses, or synapses of the type 2 catecholamine amacrine cells onto other neuronal elements, are rarely found. Some synapses of the type 2 catecholamine cells onto non-immunoreactive amacrine cells have been identified, however. This unusual pattern of synaptic organization, with many identifiable input synapses but few morphologically characterizable output synapses, suggests a paracrine function for the dopamine released by the type 2 catecholamine amacrine cells in the primate retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study.Brain Research 9, 268–87.

    PubMed  Google Scholar 

  • Dearry, A. &Burnside, B. (1986) Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.Journal of Neurochemistry 46, 1006–21.

    Google Scholar 

  • Dowling, J. E. &Boycott, B. B. (1986) Organization of the primate retina: electron microscopy.Proceedings of the Royal Society of London, Series B 166, 80–111.

    Google Scholar 

  • Dowling, J. E. &Ehinger, B. (1975) Synaptic organization of the amine-containing interplexiform cells of the goldfish and cebus monkey retinas.Science 188, 270–3.

    PubMed  Google Scholar 

  • Ehinger, B. (1966) Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus).Investigative Ophthalmology 5, 42–52.

    Google Scholar 

  • Ehinger, B. (1982) Neurotransmitter systems in the retina.Retina 2, 305–21.

    PubMed  Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study.Journal of Anatomy 93, 420–33.

    PubMed  Google Scholar 

  • Hadjiconstantinou, M., Mariani, A. P., Panula, P., Joh, T. H. &Neff, N. H. (1984) Immunohistochemical evidence for epinephrine-containing retinal amacrine cells.Neuroscience 13, 547–51.

    PubMed  Google Scholar 

  • Hokoc, J. N. &Mariani, A. P. (1987) Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells.Journal of Neuroscience 7, 2785–93.

    PubMed  Google Scholar 

  • Iuvone, P. M. (1988) Dopamine: a light-adaptive modulator of melatonin synthesis in the frog retina. InDopaminergic Mechanisms in Vision (edited byBodis-Wollner, I. &Piccolino, M.) pp. 95–107. New York: Alan R. Liss.

    Google Scholar 

  • Iuvone, P. M., Tigges, M., Fernandes, A. &Tigges, J. (1989) Dopamine synthesis and metabolism in rhesus monkey retina: development, aging, and the effects of monocular deprivation.Visual Neuroscience 2, 465–71.

    PubMed  Google Scholar 

  • Keyser, K. T., Karten, H. J., Katz, B. &Bohn, M. C. (1987) Catecholaminergic horizontal and amacrine cells in the ferret retina.Journal of Neuroscience 7, 3996–4004.

    Google Scholar 

  • Kolb, H. &Famiglietti, E. V. Jr. (1983) Rod and cone pathways in the inner pléxiform layer of cat retina.Science 186, 47–9.

    Google Scholar 

  • Laties, A. M. &Jacobowitz, D. (1966) A comparative study of the autonomic innervation of the eye in monkey, cat and rabbit.Anatomical Record 156, 383–96.

    PubMed  Google Scholar 

  • Mariani, A. P. (1983) Giant bistratified bipolar cells in monkey retina.Anatomical Record 206, 215–20.

    Google Scholar 

  • Mariani, A. P. &Hokoc, J. N. (1988) Two types of tyrosine hydroxylase immunoreactive amacrine cell in the rhesus monkey retina.Journal of Comparative Neurology 276, 81–91.

    Google Scholar 

  • Mariani, A. P., Kolb, H. &Nelson, R. (1984) Dopaminecontaining amacrine cells of rhesus monkey retina parallel rods in spatial distribution.Brain Research 322, 1–7.

    PubMed  Google Scholar 

  • McMahon, D. G., Knapp, A. G. &Dowling, J. E. (1989) Horizontal cell gap junctions: single-channel conductance and modulation by dopamine.Proceedings of the National Academy of Science (USA) 86, 7639–43.

    Google Scholar 

  • Nguyen-Legros, J., Botteri, C., Phuc, L. H., Vigny, A. &Gay, M. (1984) Morphology of primate's dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts.Brain Research 295, 145–53.

    PubMed  Google Scholar 

  • Nguyen-Legros, J., Versaux-Botteri, C., Vigny, A. &Raux, N. (1985) Tyrosine hydroxylase immunohisto-chemistry fails to demonstrate dopaminergic interplexiform cells in the turtle retina.Brain Research 339, 323–8.

    PubMed  Google Scholar 

  • Piccolino, M., Neyton, J. &Gerschenfeld, H. M. (1984) Decrease of gap junction permeability induced by cyclic adenosine 3′5′-monophosphate in horizontal cells of the turtle retina.Proceedings of the National Academy of Sciences (USA) 79, 3671–5.

    Google Scholar 

  • Stell, W. K., Walker, S. E., Chohan, K. S. &Ball, A. K. (1984) The goldfish nervus terminalis: a lutenizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.Proceedings of the National Academy of Sciences (USA) 81, 940–4.

    Google Scholar 

  • Sternberger, L. (1986)Immunocytochemistry, 3rd edn. New York: Wiley.

    Google Scholar 

  • Tauchi, M., Madigan, N. K. &Masland, R. H. (1990) Shapes and distributions of the catecholamine-accumulating neurons in the rabbit retina.Journal of Comparative Neurology 293, 178–89.

    Google Scholar 

  • Teitleman, G., Gershon, M. D., Rothman, T. P., Joh, T.-H. &Reis, D. J. (1981) Proliferation and distribution of cells that transiently express a catecholaminergic phenotype during development in mice and rats.Developmental Biology 86, 348–55.

    PubMed  Google Scholar 

  • Teranishi, T., Negishi, K. &Kato, S. (1983) Dopamine modulates S-potential and dye-coupling between external horizontal cells in carp retina.Nature 301, 243–6.

    PubMed  Google Scholar 

  • Wang, H.-H., Cuenca, N. &Kolb, H. (1990) Development of morphological types and distribution patterns of amacrine cells immunoreactive to tyrosine hydroxylase in the cat retina.Visual Neuroscience 4, 159–75.

    PubMed  Google Scholar 

  • Yazulla, S. &Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina.Visual Neuroscience 1, 13–29.

    PubMed  Google Scholar 

  • Zucker, C. L. &Dowling, J. E. (1987) Centrigufal fibres synapse on dopaminergic interplexiform cells in teleost retina.Nature 330, 166–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, A.P. Synaptic organization of type 2 catecholamine amacrine cells in the rhesus monkey retina. J Neurocytol 20, 332–342 (1991). https://doi.org/10.1007/BF01235550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235550

Keywords

Navigation