Skip to main content
Log in

Replication-dependent mutagenesis by 5-bromodeoxyuridine: Identification of base change and sequence effects on mutability

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The moleeular mechanism of reversion induced by 5-bromodeoxyuridine (BrdU) replication-dependent mutagenesis in mammalian cells was studied. Murine cells with single mutant copies of theE. coli gpt gene integrated chromosomally as part of a shuttle vector were mutagenized with BrdU, and GPT+ revertants were selected. Thirteen mutant cell lines (each of which had agpt gene that varied from the wild-type gene by a different GC → AT base transition in the coding region) were mutagenized, and only four were found to be effectively reverted. All revertantgpt genes that were analyzed had reverted via AT → GC base transition at the original site of mutation, thus demonstrating that replication-dependent mutagenesis by BrdU causes AT → GC transitions. The nine cell lines that were nonrevertible by BrdU replication-dependent mutagenesis could be mutated by this protocol to ouabain resistance as effectively as the four revertible lines, indicating that the nonrevertible lines were susceptible to such mutagenesis. Thus, differences among the cell lines in frequencies of HAT' revertants generated by BrdU replication-dependent mutagenesis could not be attributed to differences in general susceptibility of the lines to the mutagenic protocol. The revertible and nonrevertible lines could not be separated according to the position of the original GC → AT transition in thegpt coding region. However, there was evidence that the DNA base sequence flanking the site of mutation affected the susceptibility of that site to BrdU replication-dependent mutagenesis. For example, six of the cell lines tested hadgpt genes in which the mutant T residue was immediately adjacent on its 3′ side to an A residue, and all six were found to be nonrevertible by BrdU replication-dependent mutagenesis. Furthermore, a target AT base pair flanked by GC base pairs in opposite orientation and either immediately adjacent to or one base removed from the target site on both the 5′ and 3′ sides appeared to have an increased susceptibility to BrdU replication-dependent mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Freese, E. (1959).J. Mol. Biol. 187–105.

    Google Scholar 

  2. Rudner, R. (1960).Biochem. Biophys. Res. Commun. 3275–280.

    Google Scholar 

  3. Champe, S.P., and Benzer, S. (1962).Proc. Natl. Acad. Sci. U.S.A. 48532–546.

    Google Scholar 

  4. Terzaghi, B.E., Streisinger, G., and Stahl, F.W. (1962).Proc. Natl. Acad. Sci. U.S.A. 481519–1524.

    Google Scholar 

  5. Howard, B.D., and Tessman, I. (1964).J. Mol. Biol. 9364–371.

    Google Scholar 

  6. Ronen, A., and Rahat, A. (1976).Mutat. Res. 3421–33.

    Google Scholar 

  7. Skopek, T.R., and Hutchinson, F. (1982).J. Mol. Biol. 15919–33.

    Google Scholar 

  8. Stark, R.M., and Littlefield, J.W. (1974).Mutat. Res. 22281–286.

    Google Scholar 

  9. Aebersold, P.M. (1976).Mutat. Res. 36357–362.

    Google Scholar 

  10. Kaufman, E.R., and Davidson, R.L. (1978).Proc. Natl. Acad. Sci. U.S.A. 754982–4986.

    Google Scholar 

  11. Kaufman, E.R. (1984).Mol. Cell. Biol. 42449–2454.

    Google Scholar 

  12. Davidson, R.L., Broeker, P., and Ashman, C.R. (1988).Proc. Natl. Acad. Sci. U.S.A. 854406–4410.

    Google Scholar 

  13. Lasken, R.S., and Goodman, M.F. (1984).J. Biol. Chem. 25911491–11495.

    Google Scholar 

  14. Lasken, R.S., and Goodman, M.F. (1985).Proc. Natl. Acad. Sci. U.S.A. 821301–1305.

    Google Scholar 

  15. Sowers, L.C., Goodman, M.F., Eritja, R., Kaplan, B., and Fazakerley, G.V. (1989).J. Mol. Biol. 205437–447.

    Google Scholar 

  16. Pietrzykowska, I., Krych, M., and Shugar, D. (1985).Mutat. Res. 149287–296.

    Google Scholar 

  17. Davidson, R.L., and Kaufman, E.R. (1978).Nature 276722–723.

    Google Scholar 

  18. Kaufman, E.R., and Davidson, R.L. (1979).Somat. Cell Genet. 5653–663.

    Google Scholar 

  19. Ashman, C.R., and Davidson, R.L. (1981).Mol. Cell. Biol. 1254–260.

    Google Scholar 

  20. Ashman, C.R., Reddy, G.P.V., and Davidson, R.L. (1981).Somat. Cell Genet. 7751–768.

    Google Scholar 

  21. Ashman, C.R., Jagadeeswaran, P., and Davidson, R.L. (1986).Proc. Natl. Acad. Sci. U.S.A. 833356–3360.

    Google Scholar 

  22. Greenspan, J.A., Xu, F., and Davidson, R.L. (1988).Mol. Cell. Biol. 84185–4189.

    Google Scholar 

  23. Gelbert, L.M., and Davidson, R.L. (1988).Proc. Natl. Acad. Sci. U.S.A. 859143–9147.

    Google Scholar 

  24. Kaufman, E.R. (1985).Mol. Cell. Biol. 53092–3096.

    Google Scholar 

  25. Littlefield, J.W. (1964).Nature 2031142–1144.

    Google Scholar 

  26. Ashman, C.R., and Davidson, R.L. (1987).Somat. Cell Mol. Genet. 13563–568.

    Google Scholar 

  27. Lebkowski, J.S., Miller, J.H., and Calos, M.P. (1986).Mol. Cell. Biol. 61838–1842.

    Google Scholar 

  28. Thelander, L., and Reichard, P. (1979).Annu. Rev. Biochem. 48133–158.

    Google Scholar 

  29. Trautner, T.A., Swartz, M.N., and Kornberg, A. (1962).Proc. Natl. Acad. Sci. U.S.A. 48449–455.

    Google Scholar 

  30. Petruska, J., and Goodman, M.F. (1985).J. Biol. Chem. 2607533–7539.

    Google Scholar 

  31. Bessman, M.J., and Reha-Krantz, L.J. (1977).J. Mol. Biol. 116115–123.

    Google Scholar 

  32. Galas, D.J., and Branscomb, E.W. (1978).J. Mol. Biol. 124653–687.

    Google Scholar 

  33. Hopkins, R.L., and Goodman, M.F. (1980).Proc. Natl. Acad. Sci. U.S.A. 771801–1805.

    Google Scholar 

  34. Phear, G., Nalbantoglu, J., and Meuth, M. (1987).Proc. Natl. Acad. Sci. U.S.A. 844450–4454.

    Google Scholar 

  35. Richardson, K.K., Richardson, F.C., Crosby, R.M., Swenberg, J.A., and Skopek, T.R. (1987).Proc. Natl. Acad. Sci. U.S.A. 84344–348.

    Google Scholar 

  36. Pietrzykowska, I., Krych, M., and Shugar, D. (1984).Acta Biochim. Polon. 3165–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Greenspan, J.A. & Davidson, R.L. Replication-dependent mutagenesis by 5-bromodeoxyuridine: Identification of base change and sequence effects on mutability. Somat Cell Mol Genet 16, 477–486 (1990). https://doi.org/10.1007/BF01233197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233197

Keywords

Navigation