Skip to main content
Log in

Polygenetic tonalite-trondhjemite-granodiorite (TTG) magmatism in the Smartville Complex, Northern California with a note on LILE depletion in plagiogranites

Polgenetischer Tonalit-Tronjemit_Granodiorit (TTG)-Magmatismus im Smartville Komplex, Nord-kalifornien, mit einer Notiz über LILE Verarmung

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Tonalite, trondhjemite, and granodiorite (TTG) occur in dikes, plugs and tabular to equant plutons within the intrusive core of the Smartville Complex, a late Jurassic rifted arc. Two groups of TTG are recognized. A high-K group consisting of calc-alkaline tonalite to granodiorite is enriched in LILE and Th and depleted in Na, Y and HREE with respect to a more tholeiitic and trondhjemitic low-K group. Within the high-K group, Th, LIL, La, and La / Lu show a regional southward increase from biotite tonalite plutons in the north to granodiorite intrusions in the south. These regional chemical variations parallel regional chemical variations in older metavolcanic rocks and massive metadiabase that form the bulk of the basement into which the Smartville TTG were intruded. The geochemical and geological characteristics of most high-K group rocks are consistent with an origin by low-pressure (< 5 kb) partial melting of arc basement rocks. Some high-K group rocks, however, are strongly depleted in Y and HREE, suggestive of melting in the garnet stability field at P > 10 kb. Thus, the basement probed by the high-K group may be vertically, as well as laterally, extensive. A low-K group of largely tholeiitic tonalite to trondhjemite intrusions has lower LIL, Th, and La/Lu and higher Na, Y and HREE than the high-K group. Within this group, Y, Ga, and Na all increase to the west towards the Smartville sheeted dike complex. The westernmost intrusives in the low-K group have the chemical characteristics (e.g. high Y, Y/Nb and (Y+Nb)/Rb) of ocean ridge granites. The low-K group is best modeled by crystal fractionation of coeval, basaltic and andesitic magmas, although crustal assimilation also appears to be important in one of the intrusions.

Like most oceanic tonalites (e.g. plagiogranites), the low-K group rocks are overdepleted in LIL elements. The over-depletion appears to be an intrinsic property of the low-K intrusives, unrelated to post-magmatic hydrothermal effects. It is proposed that LIL elements are lost from low-K rocks because they evolve a vapor phase prior to the fixing of LIL elements by crystallization of a phase such as biotite. The relative order of LIL over-depletion (Rb > K > Ba) is consistent with this interpretation. Polygenetischer Tonalit-Tronhjemit-Granodiorit (TTG)-Magmatism.us im Smartville Komplex, Nord-Kalifornien, mit einer Notiz Über LILE Verarmung

Zusammenfassung

Tonalit, Trondhjemit und Granodiorit (TTG) kommen als Gänge, Schlote und flächige Plutone im intrusiven Kern des Smartville Komplexes, einem spät-Jurassischen Riftbogen vor. Zwei Gruppen von TTG liegen vor: eine K-reiche Gruppe, die aus Kalk-alkalischen Tonaliten bis Granodioriten besteht, ist LILE und Th angereichert, jedoch an Na, Y und HREE, verglichen mit der mehr tholeiitischen und trondhjemitischen K-armen Gruppen, verarmt. Innerhalb der K-reichen Gruppe zeigen Th, LIL, La und La/Lu eine Zunahme von Biotit-Tonalit-Plutonen im Norden zu Granodiorit-Intrusionen im Süden. Diese regionalen chemischen Variationen in älteren, metavulkanischen Gesteinen sind mit jenen in massiven Metadiabasen parallel. Letztere bilden den Großteil des Basements, in welches die Smartville TTG intrudierten. Die geochemischen und geologischen Charakteristika der K-reichsten Gruppe sind in Übereinstimmung mit einem Ursprung durch teilweise Aufschmelzung unter niedrigem Druck (< 5 kb) der Basement Gesteine des Bogens. Einige K-reiche Gesteine sind jedoch stärker an Y und HREE angereichert, was auf Aufschmelzung in Stabilitätsfeld von Granat bei P > 10 kb hinweist. Das Basement, von dem Teile in die K-reiche Gruppe aufgenommen wurden, dürfte daher sowohl vertikal wie lateral ausgedehnt sein. Eine K-arme Gruppe von großteils tholeiitischen Tonalit bis Trondhjemit-Intrusionen hat niedrige LIL, Th und La/Lu und höhere Na, Y und HREE als die K-reiche Gruppe. Innerhalb dieser nehmen Y, Ga und Na nach Westen gegen den Smartville “sheeted dike” Komplex zu. Die westlichsten Intrusiva in der K-armen Gruppe haben chemische Charakteristika (z.B. hohes Y, Y/Nb und (Y + Nb)/Rb) von Graniten ozeanischer Rücken. Die K-arme Gruppe läßt sich am besten durch Kristallfraktionierung gleich alter, basaltischer und andesitischer Magmen modellieren, obwohl Assimilation von Krustenmaterial in einer der Intrusionen auch von Bedeutung zu sein scheint.

Wie die meisten ozeanischen Tonalite (Plagiogranite) sind auch die Kali-armen Gesteine besonders an LIL-Elementen verarmt. Diese besondere Verarmung scheint eine charakteristische Eigenschaft von Kali-armen Intrusiven zu sein, die nicht in Beziehung zu postmagmatischen, hydrothermalen Erscheinungen steht. Wir nehmen an, daß LIL-Elemente von den Kali-armen Gesteinen in einer Dampfphase entfernt werden, bevor sie durch Kristallisation von Mineralen wie Biotit fixiert werden können. Die relative Ordnung der intensiven Abreicherung der LIL (Rb > K > Ba) stimmt mit dieser Interpretation überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker F (1979) Trondhjemite: definition, environment, and hypotheses of origin. In:Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Beard JS (1985) The geology and petrology of the Smartville intrusive complex, Northern Sierra Nevada Foothills, California Thesis, University of California, Davis, 356p (unpublished)

    Google Scholar 

  • Beard JS (1990) Partial melting of metabasites in the contact aureoles of gabbroic plutons in the Smartville complex, Sierra Nevada, California. In:Anderson JL (ed) The nature and origin of Cordilleran magmatism. Geol Soc Am Memoir 174, pp 303–314

  • ——,Day HW (1987) The Smartville intrusive complex, northern Sierra Nevada, California: the core of a rifted volcanic arc. Geol Soc Am Bull 99: 779–791

    Google Scholar 

  • ——,—— (1988) Petrology and emplacement of reversely zoned gabbro-diorite plutons in the Smartville Complex, northern California. J Petrol 29: 965–995

    Google Scholar 

  • Beard JS, Lofgren GL (1991) Dehydration melting and water-saturated melting of basaltic and andesitec greenstones and amphibolites. J Petrol 32: 365–401

    Google Scholar 

  • Beiersdorfer RE (1992) Metamorphism of the Smartville Complex and contiguous rocks, northern Sierra Nevada and Klamath Mountains, California. Thesis, University of California, Davis, 258p (unpublished)

    Google Scholar 

  • Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrologic mixing equations by least squares approximation. Science 163: 926–927

    Google Scholar 

  • Clarke DB (1992) Granitoid rocks. Chapman and Hall, New York, 283p

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer, New York, 229p

    Google Scholar 

  • Compton RR (1955) Trondhjemite batholith near Bidwell Bar, California. Geol Soc Am Bull 66: 9–44

    Google Scholar 

  • Day SD (1977) Petrology and intrusive complexities of sheeted dikes in the Smartville ophiolite, northwestern Sierra foothills, California. Geol Soc Am Abstr w/prog 9: 410

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archaean to modern comparisons. J Geophys Res 95: 21,503-21,522

    Google Scholar 

  • Edelman SH, Day HW, Bickford ME (1989a) Implications of U-Pb zircon ages for the tectonic settings of the Smartville and Slate Creek complexes, northern Sierra Nevada, California. Geology 17: 1032–1035

    Google Scholar 

  • Edelman SH, Day HW, Moores EM, Zigan SM Murphy TP, Hacker BR (1989b) Structure across an Ocean-Continent suture zone in the Northern Sierra Nevada, California. Geol Soc Am Spec Paper 224: 56p

  • Forsythe LM, Nielsen RL, Fisk MR (1994) The partitioning of HFSE between pyroxene and natural mafic to intermediate composition silicate liquids at 1 atm to 10 kb. Chem Geol 117: 107–125

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, 390p

    Google Scholar 

  • Godfrey NJ, Beaudoin BC, Klemperer SL, Mendicino Working Group (1997) Ophiolitec basement to the Great Valley forearc basin, California, from seismic and gravity data: implication for crustal growth at the North American continental margin. Geol Soc Am Bull 109: 1536–1562

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In:Coward MP, Reis AC (eds) Collision tectonics. Spec Pub Geol Soc 19: pp 67–81

  • Heitanen A (1973) Geology of the Pulga and Bucks Lake Quadrangles, Butte and Plumas Counties, California. US Geol Survey Prof Paper 731: 66p

  • Helz RT (1976) Phase relations of basalts in their melting ranges at PH2O = 5kb, part 11. Melt compositions. J Petrol 17: 139–193

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98: 455–489

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8: 523–548

    Google Scholar 

  • Mayfield JD (1996) 200 Ma Tonalite in the Eastern Smartville Complex: implications for the Emplacement of the Smartville Arc. Thesis, University of California, Davis, 94pp (unpublished)

    Google Scholar 

  • Menzies M, Blanchard D, Xenophontos C (1980) Genesis of the Smartville arc-ophiolite, Sierra Nevada foothills, California. Am J Sci 280-A: 329–344

    Google Scholar 

  • Michael PJ (1988) Partition coefficients for rare earth elements in mafic minerals of highsilica rhyolites: the importance of accessory mineral inclusions. Geochim Cosmochim Acta 52: 275–282

    Google Scholar 

  • Patino Douce AE, Beard JS (1995) Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36: 707–738

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36: 891–931

    Google Scholar 

  • Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22: 247–263

    Google Scholar 

  • Rollinson H (1992) Using geochemical data: evaluation, presentation, interpretation. Longman, Harlow, 352p

    Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107: 41–59

    Google Scholar 

  • Saleeby JB, Shaw HF, Niemeyer S, Moores EM, Edelman SH (1989) U/Pb, Sm/Nd and Rb/ Sr geochronological and isotopic study of northern Sierra Nevada ophiolitic assemblages, California. Contrib Mineral Petrol 102: 205–220

    Google Scholar 

  • Snoke AW, Quick JE, Bowman HR (1981) Bear Mountain igneous complex, Klamath Mountains, California: an ultramafic to silicic, cale-alkaline suite. J Petrol 22: 501–552

    Google Scholar 

  • Snoke AW, Sharp WD, Wright JE, Saleeby JB (1982) Significance of mid-Mesozoic peridotitic to dioritic intrusive complexes, Klamath Mountains - western Sierra Nevada, California. Geology 10: 160–166

    Google Scholar 

  • Souter B, Day HW (1991) Arc basement of the Smartville Complex, northern Sierra Nevada, California. Geol Soc Am Abstr w/prog 23: 99

    Google Scholar 

  • Spulber SD, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24: 1–25

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene IzuBonin and Jurassic California arcs. Geol Soc Am Bull 104: 1621–1636

    Google Scholar 

  • Wolf MB, Wyllie PJ (1991) Dehydration melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity, and applications to the segregation of magmas. Mineral Petrol 44: 151–179

    Google Scholar 

  • Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127: 43–59

    Google Scholar 

  • Xenophontos C (1984) Geology, petrology, and geochemistry of part of the Smartville Complex, Northern Sierra Nevada Foothills, California. Thesis, University of California, Davis, 446pp (unpublished)

    Google Scholar 

  • Xenophontos C, Bond GC (1978) Petrology, sedimentation and paleogeography of the Smartville terrane (Jurassic) — bearing on the genesis of the Smartville ophiolite. In:Howell B, MacDougall I (eds) Mesozoic paleogeography of the Western United States. Soc Econ Paleontologists Mineralogists, Pacific Coast Paleogeography Symposium 2, pp 291–302

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beard, J.S. Polygenetic tonalite-trondhjemite-granodiorite (TTG) magmatism in the Smartville Complex, Northern California with a note on LILE depletion in plagiogranites. Mineralogy and Petrology 64, 15–45 (1998). https://doi.org/10.1007/BF01226562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01226562

Keywords

Navigation