Skip to main content
Log in

Variational bounds on the eigenangle ω of transversely isotropic materials

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

It is shown that the necessary parameters for an invariant description of the elastic behaviour of a transversely isotropic medium in terms of the spectral decomposition of its compliance tensor are the four eigenvalues of it and a dimensionless parameter, appropriately defined, the eigenangle ω. A study of the variational bounds imposed by thermodynamic restrictions on the values of the eigenangle ω is presented. It is further proposed that the eigenangle ω can be successfully used as a single parameter characterizing qualitatively both elasticity and toughness of transversely isotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomson, W.: Elements of a mathematical theory of elasticity. Phil. Trans. Royal Soc.A 155, 481–498 (1956).

    Google Scholar 

  2. Rychlewski, J.: On Hooke's law. PMM48 (3), 303–314 (1984).

    Google Scholar 

  3. Olszak, W., Urbanowski, W.: The plastic potential and the generalized distortion energy in the theory of nonhomogeneous anisotropic elastic-plastic bodies. Arch. Mekh. Stos.8, 671–694 (1956).

    Google Scholar 

  4. Theocaris, P. S., Philippidis, T. P.: Spectral decomposition of compliance and stiffness fourthrank tensors suitable for orthotropic materials. ZAMM70 (10), Art. 8892 (1990).

    Google Scholar 

  5. Walpole, L. J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. Royal Soc.A 391, 149–179 (1984).

    Google Scholar 

  6. Walpole, L. J.: Elastic behaviour of composite materials: theoretical foundations. In: Advances in applied mechanics, vol. 21, pp. 169–242. New York: Academic Press 1981.

    Google Scholar 

  7. Lakes, R.: Foam structures with a negative Poisson's ratio. Science235, 1038–1040 (1987).

    Google Scholar 

  8. Huntington, H. B.: The elastic constants of crystals. New York: Academic Press 1958.

    Google Scholar 

  9. Knight, M.: Three-dimensional elastic moduli of graphite/epoxy composites. J. Comp. Mater.16 (3), 153–159 (1982).

    Google Scholar 

  10. Gieske, J. H., Allred, R. E.: Elastic constants of B-Al composites by ultrasonic velocity measurements. Exp. Mech.14, 158–165 (1974).

    Google Scholar 

  11. Smith, R. E.: Ultrasonic elastic constants of carbon fiber and their composites. J. Appl. Phys.43 (6), 2555–2561 (1972).

    Google Scholar 

  12. Blessing, G. V., Elban, W. L.: Aluminum matrix composite elasticity measured ultrasonically. J. Appl. Mech.48, 965–966 (1981).

    Google Scholar 

  13. Read, D. T., Ledbetter, H. M.: Elastic properties of a boron—aluminum composite at low temperatures. J. App. Phys.48 (7), 2827–2831 (1977).

    Google Scholar 

  14. Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B., Weng, T.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys.41 (8), 3373–3382 (1970).

    Google Scholar 

  15. Lekhnitskii, S. G.: Anisotropic plates. Gordon and Breach 1968.

  16. Theocaris, P. S., Philippidis, T. P.: Stress distribution in orthotropic plates with coupled elastic properties. Acta Mech.80, 95–111 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theocaris, P.S., Philippidis, T.P. Variational bounds on the eigenangle ω of transversely isotropic materials. Acta Mechanica 85, 13–26 (1990). https://doi.org/10.1007/BF01213539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213539

Keywords

Navigation