Skip to main content
Log in

The structures of polyinosinic acid

  • Published:
Biophysik Aims and scope Submit manuscript

Summary

Polyinosinic acid [poly(I)] was studied by a variety of techniques and together with the results in the literature the following structures are proposed.

  1. 1.

    CD spectra of poly(I) as a function of ionic strength, temperature andpH show the existence of three main forms. At neutral pH and low ionic strength (below 0.1 M NaCl) at 3 °C or 20 °C poly(I) is a single-stranded poorly stacked helix. At 3 °C above 0.6 M NaCl poly(I) forms a multi-stranded (probably four-stranded) parallel left-handed helix. At 20 °C this structure is not completely formed. Between these extremes of ionic strength mixtures of the two forms are present which evolve differently with time, depending on ionic strength and temperature.

  2. 2.

    The acid titration of poly(I) shows three regions as a function of ionic strength, following the same pattern as the CD spectra. The ionic strength dependence of thepK. (∼1.5) above 0.6 M NaCl suggests, but does not prove that N7 of the hypoxanthines may be implicated in the hydrogen-bonding scheme. Similarly, at high ionic strength methylation on N7 is greatly reduced in rate and extent.

  3. 3.

    It is shown that the X-ray fiber pattern of Rich could be interpreted by a fourstranded helix withM=23/2 using a hydrogen bond between N1 and N7 between neighbouring bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brahms, J., Sadron, G.: Ionic and hydrogen bond interactions contributing to the conformational stability of polynucleotides. Nature212, 1309 (1966).

    Google Scholar 

  2. Chantot, J. F., Sarocchi, M. Th., Guschlbauer, W.: Physico-chemical properties of nucleosides. 4. Gel formation by guanosine and its analogues. Biochimie53, 347 (1971).

    Google Scholar 

  3. Chantot, J. F., Guschlbauer, W.: Physico-chemical properties of nucleosides. 5. Mechanism of gel formation by guanine nucleosides. In: The Purines. Jerusalem Symp. Quantum Chem. and Biochem.4, 205 (1972).

    Google Scholar 

  4. Clauwaert, J., Stockx, J.: Interactions of polynucleotides and their components. I. Dissociation constants of the bases and their derivatives. Z. Naturforsch.23b, 25 (1968).

    Google Scholar 

  5. Formoso, C., Tinoco, I.: Minor nucleosides in RNA: Optical studies of dinucleoside phosphates containing inosine. Biopolymers10, 531 (1971).

    Google Scholar 

  6. Geliert, M., Lipsett, M. N., Davies, D. R.: Helix formation by guanylic acids. Proc. Natl. Acad. Sci. U.S.48, 2013 (1962).

    Google Scholar 

  7. Gromova, E. S., Guschlbauer, W., Holý, A.: Oligonucleotide conformations. 2. Optical studies on 8-bromoguanylyl-3′-5′-8-bromoguanosine. FEBS-Letters26, 176 (1972).

    Google Scholar 

  8. Guschlbauer, W., Courtois, Y.:pH induced changes in optical activity of guanine nuoleosides. FEBS-Letters1, 183 (1968).

    Google Scholar 

  9. Guschlbauer, W., Frič, I., Holý, A.: Oligonucleotide Conformations 1. Optical studies on GpU analogues with modified undine residues. Europ. J. Biochem.31, 1 (1972).

    Google Scholar 

  10. Hall, C. E.: Electron microscopy of polynucleotides. Ann. N. Y. Acad. Sci.81, 723 (1959).

    Google Scholar 

  11. Haselkorn, R.: The conformation of polyinosinic acid in solution. Ph. D. Thesis, Harvard University, Chapter II, p. 9–70 (1959).

  12. Harrington, W. F., Karr, G. H.: Collagen structure in solution. II. Analysis of refolding kinetics in terms of nucleation and growth processes. Biochemistry9, 3725 (1970).

    Google Scholar 

  13. Hinz H.-J., Haar, W., Ackermann Th.: Experimental thermodynamics of the helixrandom coil transition. III. Determination of the transition enthalpies of the helical complexes poly(I+C) and poly(I) in solution. Biopolymers9, 923 (1970).

    Google Scholar 

  14. Lumry, R., Rajender, S.: Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers9, 1125 (1970).

    Google Scholar 

  15. Michelson, A. M., Pochon, P.: Polynucleotide analogues VII. Methylation of polynucleotides. Bioohim. et Biophys. Acta114, 469 (1966).

    Google Scholar 

  16. Michelson, A. M., Massoulié, J., Guschlbauer, W.: Synthetic polynucleotides. Progr. Nucleic Acid Bes. Mol. Biol.6, 83 (1967).

    Google Scholar 

  17. Michelson, A. M., Monny, C., Kapuler, A.: Poly-8-Bromo-guanyIic acid. Biochim. et Biophys. Acta217, 7 (1971).

    Google Scholar 

  18. Miles, H. T.: Tautomeric forms in a polynucleotide helix and their bearing on the structure of DNA. Proo. Natl. Acad. Sci. U.S.47, 791 (1961).

    Google Scholar 

  19. Millar, D., Grafius, M. A.: A polyl cryoform. Currents Mod. Biol.1, 121 (1967).

    Google Scholar 

  20. Mitsui, Y., Langridge, R., Shortle, B. E., Cantor, C. R., Grant, R. C., Kodama, M., Wells, R. D.: Physical and enzymatic studies on poly d(I-C). poly d(I-C), an unusual double helical DNA. Nature228, 1166 (1970).

    Google Scholar 

  21. Pörschke, D., Eigen, M.: Cooperative nonenzymic base recognition. III. Kinetics of the helix-coil transition of the oligoribouridylic · oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidpH. J. Mol. Biol.62, 361 (1971).

    Google Scholar 

  22. Pochon, F., Michelson, A. M.: Equilibre dans la conformationanti-syn des acides oligoinosiniques en solution. Compt. rend. Acad. Sci. Paris270, 1829 (1970).

    Google Scholar 

  23. Rich, A.: The molecular structure of polyinosinic acid. Biochim. et Biophys. Acta29, 502 (1958).

    Google Scholar 

  24. Sarkar, P. K., Yang, J. T.: Optical activity and the conformation of polyinosi acid and several other polynucleotide complexes. Biochemistry4, 1238 (1965).

    Google Scholar 

  25. Souleil, C., Panijel, J.: Immunochemistry of polyribonucleiotides. Study of polyriboinosinic and polyriboguanylic acids. Biochemistry7, 7 (1968).

    Google Scholar 

  26. Thiele, D., Guschlbauer, W.: Polynucleotides protonés. VII. Transitions thermiques entre differents complexes de l'acide polyinosinique et de l'acide polycytidylique en milieu acide. Biopolymers8, 361 (1969).

    Google Scholar 

  27. Tinoco, I.: The optical properties of polynucleotides. J. chim. phys.65, 91 (1968).

    Google Scholar 

  28. Tougard, P., Chantot, J. F., Guschlbauer, W.: Nucleoside conformations 10. An X-ray fiber diffraction study of the gels of guanine nucleosides. Biochim. Biophys. Acta308, 9 (1973).

    Google Scholar 

  29. Vetterl, Vl., Guschlbauer, W.: Protonated polynucleotide structures XI. Polyadenylic acid at high ionic strength. Arch. Biochem. Biophys.148, 130 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory of Prof. Dr. Margarethe Janke (Wien) (1897 to 1972).

Ce travail fera partie de la Thèse de Doctorat-ès-sciences naturelles (Université Paris-Sud, Centre d'Orsay) de Danielle Thiele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, D., Guschlbauer, W. The structures of polyinosinic acid. Biophysik 9, 261–277 (1973). https://doi.org/10.1007/BF01184691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184691

Keywords

Navigation