Skip to main content
Log in

Thermal stresses in a shrink fit due to an inhomogeneous temperature distribution

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Based on Tresca's yield condition and its associated flow rule, a semianalytical method is presented for the calculation of thermal stresses due to steady-state thermal loading in an assembled shrink fit. The calculation is evaluated assuming plane stress conditions, linear elastic-perfectly plastic materials, and linearly temperature dependent yield stresses. Depending on the temperature gradient, different combinations of pure elastic and plastic zones arise in the shaft and in the hub.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kollmann, F. G.: Die Auslegung elastisch-plastisch beanspruchter Querpreßverbände. Forsch. Ing.-Wes.44, 1–11 (1978).

    Google Scholar 

  2. Kollmann, F. G., Önöz, E.: Ein verbessertes Auslegungsverfahren für elastisch-plastisch beanspruchte Preßverbände. Konstruktion35, 439–444 (1983).

    Google Scholar 

  3. Gamer, U., Lance, R. H.: Elastisch-plastische Spannungen im Schrumpfsitz. Forsch. Ing.-Wes.48, 192–198 (1982).

    Google Scholar 

  4. Orçan, Y., Gamer, U.: The shrink fit consisting of elastic hollow shaft and nonlinearly hardening elastic-plastic hub. Acta Mech.81, 97–108 (1990).

    Google Scholar 

  5. Mack, W.: Instationäre Fügespannungen in einem elastisch-plastischen Querpreßverband zweier Kreisringe. ZAMM65, T151-T152 (1983).

    Google Scholar 

  6. Mack, W.: Spannungen im thermisch gefügten elastisch-plastischen Querpreßverband mit elastischer Entlastung. Ing.-Arch.56, 301–313 (1986).

    Google Scholar 

  7. Faupel, J. H., Fischer, F. E.: Engineering design, p. 29. New York, Chichester, Brisbane, Toronto: J. Wiley 1981.

    Google Scholar 

  8. Lippmann, H.: The effect of a temperature cycle on the stress distribution in a shrink fit. Int. J. Plasticity8, 567–582 (1982).

    Google Scholar 

  9. Cordts, D.: Numerische Simulation des Fügens von Querpreßverbindungen. Konstruktion42, 278–284 (1990).

    Google Scholar 

  10. Radeloff-Bach, M.: Untersuchung des instationären Temperaturfeldes beim Fügen von Querpreßverbänden mittels finiter Elemente. Fortschr.-Ber VDI-Z. Reihe 1, Nr. 133, pp. 110–111 (1985).

    Google Scholar 

  11. Chakrabarty, J.: Theory of plasticity, p. 336. New York: McGraw-Hill. 1987.

    Google Scholar 

  12. Gamer, U.: The elastic-plastic shrink fit with supercritical interference. Acta Mech.61, 1–14 (1986).

    Google Scholar 

  13. Bland, D. R.: Elasto-plastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients. J. Mech. Phys. Solids4, 209–229 (1956).

    Google Scholar 

  14. Lippmann, H., Mahrenholtz, O.: Plastomechanik der Umformung metallischer Werkstoffe, Bd. 1, pp. 14–15, 313. Berlin Heidelberg New York: Springer 1967.

    Google Scholar 

  15. Bayazitoĝlu, Y., Özişik, M. N.: Elements of heat transfer, p. 149. New York: McGraw-Hill 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, Á. Thermal stresses in a shrink fit due to an inhomogeneous temperature distribution. Acta Mechanica 105, 173–187 (1994). https://doi.org/10.1007/BF01183950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183950

Keywords

Navigation