Skip to main content
Log in

Plasma membrane structure at the axon hillock, initial segment and cell body of frog dorsal root ganglion cells

  • Published:
Journal of Neurocytology

Summary

Analysis of the plasmalemma of frog dorsal root ganglion cells by freeze-fracture demonstrates regional differences in the distribution of intramembranous particles. Although P-face particles are distributed rather uniformly, the E-face particle concentration at the cell body (∼300 μm−2) is much lower than that at the axon hillock (∼900 μm−2), proximal initial segment (∼1000 μm−2), or intermediate portion of the initial segment (∼800 μm−2). The particle concentrations in the latter regions approach that at the node of Ranvier and, moreover, particle size analysis reveals that the E-face particles, like those at the node, include a large number that are 10 nm or more in diameter. Thin sections reveal patches of a dense undercoating on the cytoplasmic surface of the axolemma in some regions of the initial segment but not the axon hillock. It is concluded from these results that the axon hillock and the initial segment of dorsal root ganglion cells have some of the structural characteristics of the node of Ranvier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black, J. A., Foster, R. E. &Waxman, S. G. (1983) Freeze-fracture ultrastructure of developing and adult non-myelinated ganglion cell axolemma in the retinal nerve fibre layer.Journal of Neurocytology 12, 201–12.

    Google Scholar 

  • Devor, M. &Obermayer, M. (1984) Membrane differentiation in rat dorsal root ganglia and possible consequence for back pain.Neuroscience Letters 51, 341–6.

    Google Scholar 

  • Dichter, M. A. &Fischbach, G. D. (1977) The action potential of chick dorsal root ganglion neurons maintained in cell culture.Journal of Physiology 267, 281–98.

    Google Scholar 

  • Henkart, M., Landis, D. M. D. &Reese, T. S. (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons.Journal of Cell Biology 70, 338–47.

    Google Scholar 

  • Heyer, E. J. &Macdonald, R. L. (1982) Calcium- and sodium-dependent action potentials of mouse spinal cord and dorsal root ganglion neurons in cell culture.Journal of Neurophysiology 47, 641–55.

    Google Scholar 

  • Ito, M. (1957) The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes.Japanese Journal of Physiology 7, 297–323.

    Google Scholar 

  • Ito, M. (1959) An analysis of potentials recorded intracellularly from the spinal ganglion cell.Japanese Journal of Physiology 9, 20–31.

    Google Scholar 

  • Karnovsky, M. (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. InAbstracts of Papers, 11th Annual Meeting of the American Society for Cell Biology p. 146.

  • Koketsu, K., Cerf, J. A. &Nishi, S. (1959) Further observations on activity of frog spinal ganglion cells in sodium-free solutions.Journal of Neurophysiology 27, 693–703.

    Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S. &Tsyndrenko, A. Y. (1981a) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. I. Sodium currents.Neuroscience 6, 2423–30.

    Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S. &Fedulova, S. A. (1981b) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. II. Calcium currents.Neuroscience 6, 2431–8.

    Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S. &Fedulova, S. A. (1981c) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. III. Potassium currents.Neuroscience 6, 2439–44.

    Google Scholar 

  • Kristol, C., Sandri, C. &Akert, K. (1978) Intramembranous particles at the nodes of Ranvier of the cat spinal cord: a morphometric study.Brain Research 142, 391–400.

    Google Scholar 

  • Lieberman, A. R. (1976) Sensory ganglia. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 188–278. London: Chapman and Hall.

    Google Scholar 

  • Matsuda, Y., Yoshida, S. &Tonesawa, T. (1978) Tetrodotoxin sensitivity and Ca component of action potentials in mouse dorsal root ganglion cells cultured in vitro.Brain Research 154, 69–82.

    Google Scholar 

  • Pannese, E. (1981) The satellite cells of the sensory ganglia.Advances in Anatomy, Embryology and Cell Biology 65, 1–111.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. De F. (1976)The fine structure of the nervous system. The neurons and supporting cells. Philadelphia, London, Toronto: Saunders.

    Google Scholar 

  • Quick, D. C. &Waxman, S. G. (1977) Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide.Journal of the Neurological Sciences 31, 1–11.

    Google Scholar 

  • Rambourg, A., Clermont, Y. &Beaudet, A. (1983) Ultrastructural features of six types of neurons in rat dorsal root ganglia.Journal of Neurocytology 12, 47–66.

    Google Scholar 

  • Rosenbluth, J. (1962) Subsurface cisterns and their relationship to the neuronal plasma membrane.Journal of Cell Biology 13, 405–19.

    Google Scholar 

  • Rosenbluth, J. (1974) Substructure of amphibian motor endplate.Journal of Cell Biology 62, 755–66.

    Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.Journal of Neurocytology 5, 731–45.

    Google Scholar 

  • Rosenbluth, J. (1983) Structure of the node of Ranvier. InStructure and Function in Excitable Cells (edited byChang, D. C., Tasaki, I., Adelmań, W. J. &Leuchtag, H. R.), pp. 25–52. New York: Plenum Publishing Corporation.

    Google Scholar 

  • Sato, M. &Austin, G. (1961) Intracellular potentials of mammalian dorsal root ganglion cells.Journal of Neurophysiology 24, 569–82.

    Google Scholar 

  • Smith, T. G. (1983) Sites of action potential generation in cultured vertebrate neurons.Brain Research 288, 381–3.

    Google Scholar 

  • Stolinski, C., Breathnach, A. S., Martin, B., Thomas, P. K., King, R. G. M. &Gabriel, G. (1981) Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve.Journal of Neurocytology 10, 679–91.

    Google Scholar 

  • Tao-Cheng, J.-H. &Rosenbluth, J. (1980) Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves.Brain Research 199, 249–65.

    Google Scholar 

  • Tao-Cheng, J.-H. &Rosenbluth, J. (1984) Extranodal particle accumulations in the axolemma of myelinated frog optic axons.Brain Research 38, 289–300.

    Google Scholar 

  • Waxman, S. G. &Foster, R. E. (1980) Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers.Brain Research Reviews 2, 205–34.

    Google Scholar 

  • Yoshida, S. &Matsuda, Y. (1979) Studies on sensory neurons of the mouse with intracellular recording and horseradish peroxidase-injection techniques.Journal of Neurophysiology 42, 1134–45.

    Google Scholar 

  • Yoshida, S., Matsuda, Y. &Samejima, A. (1978) Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse.Journal of Neurophysiology 41, 1096–106.

    Google Scholar 

  • Zenker, W. &Högel, E. (1976) The prebifurcation section of the axon of the rat spinal ganglion cell.Cell and Tissue Research 165, 345–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, E., Rosenbluth, J. Plasma membrane structure at the axon hillock, initial segment and cell body of frog dorsal root ganglion cells. J Neurocytol 14, 731–747 (1985). https://doi.org/10.1007/BF01170825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170825

Keywords

Navigation