Skip to main content
Log in

A micromechanical study of the evolution of the yield locus of an 1100 aluminium sheet due to rolling

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The purpose of the current study is to better understand the cold-rolling process through a micromechanical study. The dominant deformation mechanism is assumed to be the crystallographic slips in crystals. Specifically, the texture development in the metal sheet due to cold-rolling is simulated with a Taylor-type model, and the resultant yield loci are determined by employing Harren's self-consistent formulation to the situation in which the loading directions are not coaxial with the symmetric axes of the metal sheet. The calculations are evaluated with experimental data. Results show that these micromechanical models are quite successful in predicting the plastic behavior of metal sheets subject to moderate cold-rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids38, 405–417 (1990).

    Google Scholar 

  2. Hill, R., Hutchinson, J. W.: Differential hardening in sheet metal under biaxial loading: a theoretical framework. J. Appl. Mech.59, S1-S9 (1992).

    Google Scholar 

  3. Barlat, F.: Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mat. Sci. Eng.91, 55–72 (1987).

    Google Scholar 

  4. Barlat, F., Richmond, O.: Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured F.C.C. polycrystalline sheets. Mat. Sci. Eng.95, 15–29 (1987).

    Google Scholar 

  5. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London Ser.A193, 281–297 (1948).

    Google Scholar 

  6. Pearce, R.: Some aspects of anisotropic plasticity in sheet metals. Int. J. Mech. Sci.10, 995–1005 (1968).

    Google Scholar 

  7. Woodthrope, J., Pearce, R.: The anomalous behavior of aluminium sheet under balanced biaxial tension. Int. J. Mech. Sci.12, 341–347 (1970).

    Google Scholar 

  8. Hill, R.: Theoretical plasticity of textured aggregates. Proc. Cambridge Phil. Soc.85, 179–191 (1979).

    Google Scholar 

  9. Phillips, A., Liu, C. S., Justusson, J. W.: An experimental investigation of yield surfaces at elevated temperatures. Acta Mech.14, 119–146 (1972).

    Google Scholar 

  10. Michno, M. J., Jr., Findley, W. N.: Experiments to determine small offset yield surfaces for 304L stainless steel under combined tension and torsion. Acta Mech.18, 163–179 (1973).

    Google Scholar 

  11. Hecker, S. S.: Yield surfaces in prestrained aluminium and copper. Metal. Trans.2, 2077–2086 (1971).

    Google Scholar 

  12. Lee, D., Jabara, F. S., Backofen, W. A.: Knoop-hardness yield loci for 2 titanium alloys. Trans. TMS-AIME239, 1476–1478 (1967).

    Google Scholar 

  13. Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids16, 373–394 (1968).

    Google Scholar 

  14. Lin, S. B., Ding, J. L.: Experimental study of the plastic yielding of rolled sheet metals with cruciform plate specimens. Int. J. Plasticity11, 583–604 (1995).

    Google Scholar 

  15. Mura, T.: Micromechanics of defects in solids, 2nd ed., p. 388. The Hague: Martinus Nijhoff Publisher 1987.

    Google Scholar 

  16. Havner, K. S.: Finite plastic deformation of crystalline solids, p. 164. Cambridge: University Press 1992.

    Google Scholar 

  17. Asaro, R. J., Needleman, A.: Texture development and strain hardening in rate dependent polycrystals. Acta Metall.33, 923–953 (1985).

    Google Scholar 

  18. Taylor, G. I.: Plastic strain in metals. J. Inst. Met.62, 307–324 (1938).

    Google Scholar 

  19. Mathur, K. K., Dawson, P. R.: On modeling the development of crystallographic texture in bulk forming process. Int. J. Plasticity5, 67–94 (1989).

    Google Scholar 

  20. Mathur, K. K., Dawson, P. R.: Texture development during wire drawing. J. Eng. Mat. Tech.112, 292–297 (1990).

    Google Scholar 

  21. Becker, R.: An analysis of shear localization during bending of a polycrystalline sheet. J. Appl. Mech.59, 491–496 (1992).

    Google Scholar 

  22. Kalidindi, S. R., Bronkhorst, C. A., Anand, L.: Crystallographic texture evolution in bulk deformation procession of FCC metals. J. Mech. Phys. Solids40, 537–569 (1992).

    Google Scholar 

  23. Iwakuma, T., Nemat-Nasser, S.: Finite elastic-plastic deformation of polycrystalline metals. Proc. R. Soc. London Ser.A394, 87–119 (1984).

    Google Scholar 

  24. Nemat-Nasser, S., Obata, M.: Rate-dependent, finite elasto-plastic deformation of polycrystals. Proc. R. Soc. London Ser.A407, 343–375 (1986).

    Google Scholar 

  25. Harren, S. V.: The finite deformation of rate-dependent polycrystals — I. A self-consistent framework. J. Mech. Phys. Solids39, 345–360 (1991).

    Google Scholar 

  26. Harren, S. V.: The finite deformation of rate-dependent polycrystals — II. A comparison of the self-consistent and Taylor methods. J. Mech. Phys. Solids39, 361–383 (1991).

    Google Scholar 

  27. Lee, E. H.: Elastic plastic deformation at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  28. Rice, J. R.: Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids19, 443–455 (1971).

    Google Scholar 

  29. Hill, R., Havner, K. S.: Perspectives in the mechanics of elastoplastic crystals. J. Mech. Phys. Solids30, 5–22 (1982).

    Google Scholar 

  30. Simmons, G., Wang, H.: Single crystal elastic constants and calculated aggregate properties: a handbook, p. 10. Cambridge/Mass: The MIT Press 1971.

    Google Scholar 

  31. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London Ser.A241, 376–396 (1957).

    Google Scholar 

  32. Bunge, H.-J.: Texture analysis in materials science: mathematical methods, p. 1. London: Butterworth 1982.

    Google Scholar 

  33. Hockett, J. E.: On relating flow stress of aluminium to strain, strain rate, and temperature. Trans. Metall. Soc. AIME239, 969–976 (1967).

    Google Scholar 

  34. Asaro, R. J.: Micromechanics of crystals and polycrystals. Adv. Appl. Mech.23, 1–115 (1983).

    Google Scholar 

  35. Barrett, C. S., Levensson, L. H.: Determination of orientation by etch pits. Trans. AIME137, 112–119 (1940).

    Google Scholar 

  36. Ahlborn, H., Wassermann, G.: Über die doppelte Fasertextur in gezogenen Drähten kubisch flächenzentrierter Metalle. Z. Metallkunde53, 422–427 (1962).

    Google Scholar 

  37. Phillips, A., Kasper, R.: On the foundations of thermoplasticity — an experimental investigation. ASME J. Appl. Mech.40, 891–896 (1973).

    Google Scholar 

  38. Lin, S. B., Ding, J. L., Zbib, H. M., Aifantis, E. C.: Characterization of yield surface using balanced biaxial tests of cruciform plate specimens. Scripta Metall. Mat.28, 617–622 (1993).

    Google Scholar 

  39. Svensson, N. L.: Some observations on the anisotropy of yield strength in cold-rolled and annealed metals. J. Inst. Metals94, 284–291 (1966).

    Google Scholar 

  40. Dillamore, I. L., Roberts, W. T.: Preferred orientation in wrought and annealed metals. Metall. Rev.10, 271–380 (1965).

    Google Scholar 

  41. Aernoudt, E.: Calculation of deformation textures according to the Taylor model. ICOTOM5, 45–65 (1978).

    Google Scholar 

  42. Stout, M. G., Martin, P. L., Helling, D. E., Canova, G. R.: Multiaxial yield behavior of 1100 aluminium following various magnitudes of prestrain. Int. J. Plasticity1, 163–174 (1985).

    Google Scholar 

  43. Mecking, H.: Computing simulation of texture development. ICOTOM 6, Iron and Steel Institute of Japan, Tokyo, pp. 53–66 (1981).

    Google Scholar 

  44. Mecking, H.: Deformation of polycrystals. In: Proc. 5th Int Conf. on Strength of Metals and Alloys (Gerold, V., Kostorz, G., eds.), pp. 1573–1594. Riso Natl. Lab. (1981).

  45. Asaro, R. J., Needleman, A.: Flow localization in strain hardening crystalline solids. Scripta Metal.18, 429–435 (1984).

    Google Scholar 

  46. Ferron, G., Makinde, A.: Design and development of a biaxial strength testing device. J. Testing Evaluation16, 253–256 (1988).

    Google Scholar 

  47. Szczepiński, W., Miastkowski, J.: An experimental study of the effect of the prestraining history on the yield surfaces of an aluminium alloy. J. Mech. Phys. Solids16, 153–162 (1968).

    Google Scholar 

  48. Makinde, A., Thibodeau, L., Neale, K. W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech.32, 138–144 (1992).

    Google Scholar 

  49. Makinde, A., Thirbdeav, L., Neale, K. W., Lefebvre, D.: Design of a biaxial extensometer for measuring strains in cruciform specimens. Exp. Mech.22, 132–137 (1992).

    Google Scholar 

  50. Boehler, J. P., Demmerle, S., Koss, S.: A new direct biaxial testing machine for anisotropic materials. Exp. Mech.34, 1–9 (1994).

    Google Scholar 

  51. Lin, S. B., Ding, J. L.: A modified form of Hill's orientation-dependent yield criterion for orthotropic metal sheets. J. Mech. Phys. Solids44, 1739–1764 (1996).

    Google Scholar 

  52. Ralston, A.: A first course in numerical analysis, p. 76. New York: McGraw-Hill 1965.

    Google Scholar 

  53. Phillips, C., Cornelius, B.: Computational numerical methods, p. 247. Chichester: Ellis Horwood 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.B., Ding, J.L. A micromechanical study of the evolution of the yield locus of an 1100 aluminium sheet due to rolling. Acta Mechanica 127, 97–119 (1998). https://doi.org/10.1007/BF01170366

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170366

Keywords

Navigation