Skip to main content
Log in

Fe-Ti-Oxide assemblages in the basal parts of the Central Alpine Brenner Mesozoic, Tyrol/Austria

Fe- Ti-Oxid-paragenesen an der basis des Brennermesozoikums, Tirol/Österreich

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Pseudorutile in the cores of strongly zoned ilmenite aggregates surrounded by titanhematite and rutile occurs in a metamorphic paleoweathering horizon locally covering the Austroalpine Oetztal-Stubai crystalline complex. Pseudorutile is believed to develop during early diagenetic alteration of ilmenite due to the incursion of marine groundwater. The accompanying Fe-Ti-oxide assemblages (magnetite, rutile, ilmenite, hematite) are subdivided into allothigenic, authigenic, diagenetic and metamorphic formations. The overlying clastic sediments (Upper Scythian) contain enrichments of magnetite which are interpreted as marine beach placers with reworked material of the paleoweathering horizon.

Zusammenfassung

In einer das ostalpine Ötztal-Stubaikristallin lokal bedeckenden metamorphen Verwitterungszone wurde Pseudorutil im Kern von zonierten Ilmenit-Aggregaten nachgewiesen, die von einem Saum aus Ilmenithämatit und Rutil umgeben werden. Pseudorutil entstand wahrscheinlich durch eine frühdiagenetische Umwandlung von Ilmenit im Einflußbereich mariner Grundwässer. Die begleitenden Fe-Ti-Oxidparagenesen (Magnetit, Rutil, Ilmenit, Hämatit) wurden in allothigene, authigene, diagenetische und metamorphe Bildungen untergliedert. Magnetit-Anreicherungen in den überlagernden klastischen Sedimenten des Oberskyth können größtenteils als marine Strandseifenablagerungen durch Aufarbeitung von Material des Verwitterungshorizontes interpretiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand RR, Gilkes RJ (1984) Weathering of ilmenite in a lateritic pallid zone. Clays and Clay Minerals 32: 363–374

    Google Scholar 

  • Bailey SW, Cameron EN, Spedden HR, Randall JW (1956) The alteration of ilmenite in beach sands. Econ Geol 51: 263–279

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for electron microanalysis of silicates and oxides. J Geol 76: 382–403

    Google Scholar 

  • Brandner R (1984) Meeresspiegelschwankungen und Tektonik in der Trias der NW-Tethys. Jb Geol B.-A. Wien 126: 435–475

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and their synthetic equivalents. J Petrol 5: 310–357

    Google Scholar 

  • Dietrich H (1983) Zur Petrologie und Metamorphose des Brennermesozoikums. TMPM 31: 235–257

    Google Scholar 

  • Fitzpatrick R W (1988) Iron compounds as indicators of pedogenic processes: examples from the Southern hemisphere. In: Stucki W et al (eds) Iron in soils and clay minerals. D. Reidel Publishing Company, pp 351–396

  • Flinter BH (1959) The alteration of Malayan ilmenite grains and the question of “arizonite”. Econ Geol 54: 720–729

    Google Scholar 

  • Frank W (1987) The Austroalpine unit west of the Hohe Tauern: The Ötztal-Stubai complex as an example for the eoalpine metamorphic evolution. In:Flügel HW, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Vienna, pp 379–406

    Google Scholar 

  • Frost MT, Grey IE, Harrowfiled IR, Mason K (1983) The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western Australia. Min Mag 47: 201–208

    Google Scholar 

  • Grey IE, Reid AF (1975) The structure of pseudorutile and its role in the natural alteration of ilmenite. Am Min 60: 898–906

    Google Scholar 

  • Hammer W (1928) Das Quarzkonglomerat am Hohen Burgstall im Stubai (Tirol) und seine Vererzung. Verb Geol B.-A. Wien 1928: 73–85

    Google Scholar 

  • Hoernes S, Friedrichsen H (1978) Oxygen and hydrogen isotope study of the polymetamorphic area of the western Ötztal-Stubai Alps. Contrib Miner Petrol 67: 305–315

    Google Scholar 

  • Krois P, Stingl V, Purtscheller F (1990) A metamorphosed weathering horizon from the Ötztal-Stubai crystalline complex (Eastern Alps, Austria). Geology 18: 1095–1098

    Google Scholar 

  • ——, —— (1990) Die stratigraphische Neueinstufung der basalen klastischen Gesteine im Brennermesozoikum (Stubaier Alpen/Tirol). Zentralblatt für Geologie und Paläontologie Teil I 1989: 1455–1466

    Google Scholar 

  • Lindh A (1972) A hydrothermal investigation of the system FeO, Fe2O3, TiO2. Lithos 5: 325–343

    Google Scholar 

  • Lindsley DH (1973) Delimitation of the hematite-ilmenite miscibility gap. Geol Soc Am Bull 84: 657–662

    Google Scholar 

  • McCabe C, Van der Voo R, Peacor DR, Scotese CR, Freeman R (1983) Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates. Geology 11: 221–223

    Google Scholar 

  • Melcher F (1990) Erzmineralparagenesen and Geochemie an der Basis des Serieskammes, Brennermesozoikum/Tirol. Unpublished Diploma Thesis, University of Innsbruck, VI +218p

  • Morad S, Aldahan AA (1986) Alteration of detrital Fe-Ti oxides in sedimentary rocks. Geol Soc of Amer Bull 97: 567–578

    Google Scholar 

  • Palmer C (1909) Arizonite, ferric metatitanate. Am J Sci 28: 353–356

    Google Scholar 

  • Puffer JH, Cousminer HL (1982) Factors controlling the accumulation of titanium- iron oxide-rich sands in the Cohansey Formation, Lakehurst area, New Jersey. Econ Geol 77: 379–391

    Google Scholar 

  • Rumble D (1973) Fe-Ti oxide minerals from regionally metamorphosed quartzites of Western New Hampshire. Contrib Mineral Petrol 42: 181–195

    Google Scholar 

  • —— (1976) Oxide minerals in metamorphic rocks. Min. Soc. America, Reviews in Mineralogy 3: Rl-R24

    Google Scholar 

  • Schwertmann U (1988) Occurrence and formation of iron oxides in various pedoenvironments. In:Stucki JW et al (eds) Iron in soils and clay minerals. D. Reidel Publishing Company, pp 267–308

  • Spencer KJ, Lindsley D (1981) A solution model for coexisting iron-titanium oxides. Am Min 66: 1189–1201

    Google Scholar 

  • Stingl V, Krois P (1990) Sedimentological investigations of metamorphic clastics: the basal clastic rocks of the Brenner Mesozoic (Stubai Alps, Austria/Italy). Terra Nova 2: 271–279

    Google Scholar 

  • Taylor RM (1984) Influence of chloride on the formation of iron oxides from Fe(II) chloride. I. Effect of (Cl)/(Fe) on the formation of magnetite. Clays and Clay Minerals 32: 167–174

    Google Scholar 

  • Temple AK (1966) Alteration of ilmenite. Econ Geol 61: 695–714

    Google Scholar 

  • Teufer G, Temple AK (1966) Pseudorutile, a new mineral intermediate between ilmenite and rutile in the natural alteration of ilmenite. Nature 211: 179–181

    Google Scholar 

  • Tischler SE (1979) The Verrucano- and Buntsandstein ore in Northern Tyrol. Verh Geol B.-A. Wien 1978: 491–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melcher, F. Fe-Ti-Oxide assemblages in the basal parts of the Central Alpine Brenner Mesozoic, Tyrol/Austria. Mineralogy and Petrology 44, 197–212 (1991). https://doi.org/10.1007/BF01166963

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166963

Keywords

Navigation