Skip to main content
Log in

The importance of different types of magmatism in VHMS mineralisation: evidence from the geochemistry of the host volcanic rocks to the Benambra massive sulphide deposits, Victoria, Australia

Die Bedeutung verschiedener Typen von Magmatismus für VHMS Mineralisationen: Die Geochemie der vulkanischen Nebengesteine der massiven Sulfid-Lagerstätte von Benambra, Victoria, Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Wilga and Currawong Cu-Zn massive sulphide deposits in southeastern Australia are hosted by a deformed sequence of Upper Silurian basaltic to rhyolitic volcanic and sedimentary rocks. The syn-volcanic mineralisation occurs immediately above a thick package of rhyolitic volcanic rocks and volcaniclastic rocks (Thorkidaan Volcanics), and is overlain by relatively thin intercalated sills, intrusive domes and flows of basalt, andesite and dacite (Gibson's Folly Formation). The Thorkidaan Volcanics haveεNd(420Ma) = -2.2 to - 9.8 and are considered to have been derived by partial melting of older crustal rocks, whereas the basalt-andesite-dacite hangingwall sequence hasε(Nd(415Ma) = -0.5 to + 2.0 suggesting derivation from a relatively undepleted mantle source. Relatively high-Ti andesitic to dacitic rocks from the Bumble Creek area haveεNd(415Ma) = +5.2 to +5.9 suggesting affinities with Ordovician volcanic rocks elsewhere in the Lachlan Fold Belt. The Thorkidaan Volcanics display a limited silica range (73 to 79 wt.%), but have distinctive minor and trace element variations indicating a substantial fractionation history involving feldspar and several accessory phases. Major and trace element compositions of the basalt-andesite-dacite suite display regular variations consistent with a cogenetic relationship by fractional crystallisation. The basaltic rocks mostly have low TiO2 (< 0.8 wt.%) and other chemical characteristics such as high Zr/Nb and La/Nb which suggest formation in a subduction-related setting; probably an embryonic back-arc basin developed on stretched continental lithosphere, or in small pull-apart basins developed adjacent to a transtensional margin. The magmatic history and paleogeography reflect an extensional tectonic and magmatic cycle comprising uplift, rhyolitic magmatism from crustal melting, extension, subsidence, and penetration of a mantle-derived basalt-andesite-dacite suite up extensional faults to the sea floor. Massive sulphide ores are located exactly at the stratigraphic change from rhyolitic to more mafic mantle-derived magma types. Consideration of the types of mineralisation associated with crustal, S-type granitoids, coupled with thermal constraints limiting the capacity of small bodies of silicic magma to initiate and sustain hydrothermal convection cells of reasonable size, suggests that in the absence of coeval mafic magmatism, S-type crustal-derived silicic volcanic packages are likely to be barren of VHMS deposits. Mineralisation occurs in association with mantle-derived basalt-andesite-dacite suites that either provide the necessary heat to facilitate leaching of the footwall volcanic rocks, or contribute metal-rich hydrothermal solutions during fractional crystallisation, or both.

Zusammenfassung

Die massiven Cu-Zn-Sulfid-Lagerstätten von Wilga und Currawong in Südostaustralien treten in einer tektonisch beanspruchten Abfolge von obersilurischen, basaltischen bis rhyolitischen Vulkaniten und Sedimenten auf. Die syn-vulkanische Vererzung ist unmittelbar oberhalb einer mächtigen Abfolge von rhyolitischen Vulkaniten und Vulkanoklastiten (Thorkidaan Vulkanite) zu finden, darüber folgen relativ dünne wechsellagernde G≯e, Intrusiv-Dome und Ergüsse von Basalt, Andesit und Dacit (Gibson's Folly Formation). Die Thorkidaan Vulkanite habenεNd(420Ma) =-2,2 bis - 9,8 und dürften durch partielle Aufschmelzung älterer krustaler Gesteine entstanden sein. Die Basalt-Andesit-Dacit-Abfolge im Hangenden hat jedochεNd(415Ma) = -0,5 bis + 2,0, was auf Herkunft aus einer relativ wenig verarmten Mantelquelle hinweist. Relativ Ti-reiche andesitische bis dacitische Gesteine aus dem Gebiet vom Bumble Creek zeigenεNd(415) = +5,2 bis + 5,9. Dies weist auf Beziehungen mit Ordovicischen Vulkaniten in anderen Teilen des Lachlan-Gürtels hin. Die Thorkidaan Vulkanite zeigen SiO2-Gehalte von 73 bis 79 Gew. %, und charakteristische Variationen der Haupt- und Spurenelementgehalte. Diese lassen eine signifikante Fraktionierung erkennen, an der Feldspäte und verschiedene andere Nebengemengteile beteiligt waren. Die Haupt- und Spurenelementzusammensetzungen der Basalt-Andesit-Decit-Abfolge zeigt normale Variationen, die auf co-genetische Beziehungen mit fraktionierter Kristallisation hinweisen. Die basaltischen Gesteine haben niedrige Gehalte an TiO2 (< 0, 8 gew. %) sowie hohe Zr/Nb und La/Nb Verhältnisse, die auf Bildung in einem Subduktionsbereich, wahrscheinlich in einem embryonischen Back-Arc Becken, das sich auf ausgedünnter kontinentaler Lithosphäre oder in einem kleinen Pull-Apart Becken in der Nähe eines transtensionalen Randes entwickelt hat, hinweisen. Die magmatische Entwicklungsgeschichte und die Palägeographie weisen auf Dehnungs-Tektonik und auf einen magmatischen Zyklus hin, der Hebung,rhyolitischen Vulkanismus infolge von Krustenaufschmelzung, Extension, Absenkung und Durchdringung mit einer vom Mantel bezogenen Basalt-Andesit-Dacit-Suite entlang von Verwerfungen auf den Meeresboden erkennen läßt. Massive Sulfiderze kommen genau an der stratigraphischen Grenze von rhyolitschen zu mafischen Magmatypen mit Mantel-Ursprung vor. Hier ist es erforderlich, die Vererzungstypen, die zusammen mit krustalen S-Typ Granitoiden vorkommen, ebenso zu erwägen, wie die thermalen Aspekte, die die Fähigkeit kleiner saurer Magmenkörper limitieren, hydrothermale Konvektionszellen ausreichender Größe in Gang zu setzen und zu erhalten. Das weist darauf hin, daß bei Fehlen von gleichaltrigem mafischem Magmatismus saure vulkanische Abfolgen mit Krustenherkunft sehr wahrscheinlich keine VHMS-Lagerstätten führen können. Diese Vererzungen sind an Basalt-Andesit-Dacit-Abfolgen mit Mantelherkunft gebunden, die entweder die notwendige Wärmequelle für die Auslaugung vulkanischer Gesteine im Liegenden lieferten und/oder metallreiche hydrothermale Lösungen während fraktionierter Kristallisation verfügbar machten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RL (1988) Subaqueous volcanism, sedimentation and the geological setting of Zn-Cu-Pb massive sulphide deposits, Benambra, S.E. Australia. Thesis, Monash University, Clayton, Victoria, 284 pp (unpublished)

  • Allen RL (1988) False pyroclastic textures in altered silicic lavas, with implications for volcanic-associated mineralization. Econ Geol 83: 1424–1446

    Google Scholar 

  • Allen RL (1992) Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulfide deposits at Benambra, Victoria. Econ Geol 87:825–854

    Google Scholar 

  • Allen RL, VandenBerg AHM (1988) Limestone Creek graben and associated outliers (Silurian-Middle Devonian). In:Douglas JG, Ferguson JA (eds) Geology of Victoria. Geol Soc Aust Victorian Div, pp 125–129

  • Allen RL, Barr DJ (1990) Benambra copper-zinc deposits. Australasian Inst Min Metall Mon 14: 1311–1318

    Google Scholar 

  • Bain JHC, Wyborn D, Henderson GAM, Stuart-Smith PG, Abell RS, Solomon M (1987) Regional geological setting of the Woodlawn and Captain Flat massive sulphide deposits, N.S.W., Australia. Pacrim 87: 25–28

    Google Scholar 

  • Berry RF, Crawford AJ (1988) The tectonic significance of Cambrian allochthonous maficultramafic complexes in Tasmania. Aust J Earth Sci 35: 523–533

    Google Scholar 

  • Blevin PL, Chappell BW (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans Roy Soc Edinburgh Earth Sci 83: 305–316

    Google Scholar 

  • Bodon SB, Valenta RK (1995) Primary tectonic features of the Currawong Zn-Cu-Pb (-Au) massive sulfide deposit, Benambra, Victoria: implications for ore genesis. Econ Geol 90: 1694–1721

    Google Scholar 

  • BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, 1286 pp

    Google Scholar 

  • Campbell IH, Franklin JM, Gorton MP, Hart TR, Scott SD (1981) The role of subvolcanic sills in the generation of massive sulfide deposits. Econ Geol 76: 2248–2253

    Google Scholar 

  • Candela PA (dy1989) Felsic magmas volatiles, and metallogenesis. In:Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4: 223–233

  • Cann JR, Strens MR, Rice A (1985) A simple magma-driven thermal balance model for formation of volcanogenic massive sulphides. Earth Planet Sci Lett 76: 123–134

    Google Scholar 

  • Carlson RW, Lugmair GW, MacDougall JD (1981) Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Acta 45:2483–2499

    Google Scholar 

  • Cas RAF (dy1983) A review of the palaegeographic and tectonic development of the Palaeozoic Lachlan fold belt of southeastern Australia. Geol Soc Aust Spec Pub 10: 104pp

  • Cathles LM (1978) Hydrodynamic constraints on the formation of Kuroko deposits. Min Geol 28: 257–265

    Google Scholar 

  • Cathles LM (1983) An analysis of the hydrothermal system responsible for massive sulfide deposition in the Hokuroko Basin of Japan. In:Ohmoto H, Skinner BJ (eds) Kuroko and related volcanogenic massive sulphide deposits. Econ Geol Monogr 5: 439–487

  • Chappell BW (1984) Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Phil Trans R Soc London Ser A 310: 693–707

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174

    Google Scholar 

  • Chappell BW, Stephens WE (1988) Origin of infracrustal (1-type) granite magmas. Trans R Soc Edinburgh Earth Sci 79: 71–86

    Google Scholar 

  • Chappell BW, White AJR, Hine R (1988) Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. Aust J Earth Sci 35: 505–521

    Google Scholar 

  • Collins WJ, Vernon RH (1992) Palaeozoic arc growth, deformation and migration across the Lachlan Fold Belt, southeastern Australia. Tectonophysics 214: 318–400

    Google Scholar 

  • Coney PJ, Edwards A, Hine R, Morrison F, Windrim D (1990) The regional tectonics of the Tasman orogenic system, eastern Australia. J Struct Geol 12: 519–543

    Google Scholar 

  • Cox R, Ebsworth GB, Forsythe DL (1990) The Wilga base-precious metals deposit, Benambra, Victoria, Australia. Terra Nova 2: 264–272

    Google Scholar 

  • Crawford AJ, Cameron WE, Keays RR (1984) The association of boninite low-Ti andesitetholeiite in the Heathcote Greenstone Belt, Victoria; ensimatic setting for the early Lachlan Fold Belt. Aust J Earth Sci 31: 161–175

    Google Scholar 

  • Crook KAW, Bein J, Hughes RJ, Scott PA (1973) Ordovician and Silurian history of the southeastern part of the Lachlan Geosyncline. J Geoi Soc Aust 20: 113–138

    Google Scholar 

  • Davis LW (1990) Silver-lead-zinc-copper mineralisation in the Captains Flat-Goulburn Synclinorial Zone and the Hill End Synclinorial Zone. In:Hughes FE (ed) Geology of the mineral deposits of Australia, and New Guinea. Aust Inst Min Metall, Melbourne, pp 1375–1384

    Google Scholar 

  • Day RW, Murray CG, Whitaker WG (1978) The eastern part of the Tasman orogenic zone. Tectonophysics 48: 327–364

    Google Scholar 

  • Degeling PR, Gilligan LB, Scheibner E, Suppel DW (1986) Metallogeny and tectonic development of the Tasman Fold Belt System in New South Wales. Ore Geol Rev 1: 259–313

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189–202

    Google Scholar 

  • de Ronde CEJ (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: potential for magmatic contributions. In:Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Soc Assoc Canada Short Course Ser 23: 479–509

  • Ewart A (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesite-basaltic composition range. In:Thorpe RS (ed) Andesites: orogenic andesites and related rocks. John Wiley and Sons, New York, pp 25–95

    Google Scholar 

  • Fergusson CL, VandenBerg AHM (1990) Middle Palaeozoic thrusting in the eastern Lachlan Fold Belt, southeastern Australia. J Struct Geol 12: 577–589

    Google Scholar 

  • Fergusson CL, Coney PJ (1992a) Convergence of intraplate deformation in the Lachlan Fold Belt of southeastern Australia. Tectonophysics 214: 417–439

    Google Scholar 

  • Fergusson CL, Coney PJ (1992b) Implications of a Bengal Fan-type deposit in the Paleozoic Lachlan fold belt of southeastern Australia. Geology 20: 1047–1049

    Google Scholar 

  • Fergusson CL, Gray DR, Cas RAF (1986) Overthrust terranes in the Lachlan fold belt, southeastern Australia. Geology 14: 519–522

    Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou JL, Donval JP, Erzinger J, Foucher JP, Herzig P, Mühe R, Soakai S, Wiedicke M, Whitechurch H (1991) Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349: 778–781

    Google Scholar 

  • Franklin JM, Sangster DF, Lydon JW (1981) Volcanic associated massive sulfide deposits. Econ Geol 75th Anniv Vol: 485–627

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, 390pp

    Google Scholar 

  • Gray CM (1984) An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Planet Sci Lett 70: 47–60

    Google Scholar 

  • Halbach P, Nakamura K, Wahsner M, Lange J, Sakai H, Käselitz L, Hanse R-D, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Märten A, Ishibashi J, Czerwinski S, Blum N (1989) Probable modern analogue of Kuruko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature 338: 496–499

    Google Scholar 

  • Hanson C (1984) The geology of the Bumble Creek area, northern Victoria. Thesis, Monash University, Melbourne (unpublished)

    Google Scholar 

  • Honma H, Kusakabe M, Kagami H, Iizumi S, Sakai H, Kodama Y, Kimura M (1991) Major and trace element chemistry and D/H,18O/16O,87Sr/86Sr and143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochem J 25: 121–136

    Google Scholar 

  • Johnson RW, Mackenzie DE, Smith IEM (1978) Delayed partial melting of subductionmodified mantle in Papua New Guinea. Tectonophysics 46: 197–216

    Google Scholar 

  • Jones JA, Carr PF, Fergusson CL, McDougall I (1995) Silurian volcanism in the Wollondilly Basin, eastern Lachlan Fold Belt, New South Wales. Aust J Earth Sci 42: 25–34

    Google Scholar 

  • Khin Zaw, Gemmell JB, Large RR, Mernagh T, Ryan CG (1995) Evolution and source of ore fluids in the stringer system, Hellyer VHMS deposit, Tasmania, Australia: evidence from fluid inclusion microthermometry and geochemistry. Ore Geol Rev 10: 251–278

    Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87: 471–810

    Google Scholar 

  • Letouzey J, Kimura M (1985) Okinawa Trough genesis: structure and evolution of a back-arc basin developed in a continent. Mar Petrol Geol 2: 111–130

    Google Scholar 

  • Lydon JW (1989) Volcanogenic massive sulphide deposits, part 2. Genetic models. In:Roberts RG, Sheahan PA (eds) Ore deposit models. Geoscience Canada, Reprint Series 3: 155–181

  • MacLean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. J Geochem Expl 48: 109–133

    Google Scholar 

  • Macquarie Oil NL (1987) Quarterly report 30th September, 1987. Melbourne, Macquarie Oil NL: 7pp

    Google Scholar 

  • McCulloch MT, Chappell BW (1992) Nd isotopic characteristics of S- and I-type granites. Earth Planet Sci Lett 58: 51–64

    Google Scholar 

  • McCulloch MT, Woodhead JD (1993) Lead isotopic evidence for deep crustal-scale fluid transport during granite petrogenesis. Geochim Comochim Acta 57: 659–674

    Google Scholar 

  • McKay WJ, Hazeldene RK (1987) Woodlawn Zn-Pb-Cu sulfide deposit, New South Wales, Australia: an interpretation of ore formation from field observations and metal zoning. Econ Geol 82: 141–164

    Google Scholar 

  • Miller CF, Mittlefehldt DW (1982) Depletion of light rare earth elements in felsic magmas. Geology 10: 129–133

    Google Scholar 

  • Murray CG (1986) Metallogeny and tectonic development of the Tasman fold belt system in Queensland. Ore Geol Rev 1: 315–400

    Google Scholar 

  • Norrish K, Chappell BW (1977) X-ray fluorescence spectrometry. In:Zussman J (ed) Physical method in determinative mineralogy, 2nd ed. Academic Press, London, pp 201–272

    Google Scholar 

  • Ohmoto H, Mizukami M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh TC (1983) Chemical processes of kuroko formation. Econ Geol Monogr 5: 570–604

    Google Scholar 

  • Owen M, Wyborn D (1979) Geology and geochemistry of the Tantangara and Brindabella 1:100,000 sheet areas. Bur Mineral Res Geol Geophys Bull 204: 52pp

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69: 33–47

    Google Scholar 

  • Peccirillo A, Taylor SR (1976) Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58: 63–81

    Google Scholar 

  • Petersen MD, Lambert IB, Ayres DE (1977) Results of analyses of country rocks around the Woodlawn copper-lead-zinc orebody, southeastern. New South Wales Technical Communication 63, Minerals Research Laboratories, CSIRO

  • Powell MA (1984) Ordovician to earliest Silurian: marginal sea and island arc; Silurian to mid-Devonian dextral transtensional margin; Late Devonian and Early Carboniferous: continental magmatic arc along the eastern edge of the Lachlan Fold Belt. In:Veevers JJ (ed) Phanerozoic earth history of Australia. Oxford University Press, Oxford, pp 290–340

    Google Scholar 

  • Ramsay WRH, VandenBerg AHM (1986) Metallogeny and tectonic development of the Tasman Fold Belt system in Victoria. Ore Geol Rev 1: 213–257

    Google Scholar 

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the Th and LREE chemistry of felsic magmas. Contrib Mineral Petrol 94: 304–316

    Google Scholar 

  • Robinson P, Higgins NC, Jenner GA (1986) Determination of rare earth elements, yttrium and scandium in rocks by an ion-exchange-X-ray fluorescence technique. Chem Geol 55: 121–137

    Google Scholar 

  • Rudnick RL, Goldstein SL (1990) The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet Sci Lett 98: 192–207

    Google Scholar 

  • Rudnick RL, McDonough WF, McCulloch MT, Taylor SR (1986) Lower crustal xenoliths from Queensland, Australia: evidence for deep crustal assimilation and fractionation of continental basalts. Geochim Cosmochim Acta 50: 1099–1115

    Google Scholar 

  • Sawkins FJ, Kowalik J (1981) The source of ore metals at Buchans: magmatic versus leaching models. Geol Assoc Canada Spec Pap 22: 255–267

    Google Scholar 

  • Scheibner E (1974) A plate tectonic model of the Palaeozoic tectonic history of New South Wales. J Geol Soc Aust 20: 405–426

    Google Scholar 

  • Scheibner E (1987) Palaeozoic tectonic development of eastern Australia in relation to the Pacific region. In:Monger JWH, Francheteau J (eds) Circum-Pacific orogenic belts and the evolution of the Pacific Ocean Basin. Am Geophys Union Geodynamic Ser 18: 133–165

  • Sillitoe RH (1982) Extensional habitats of rhyolite-hosted massive sulfide deposits. Geology 10: 403–407

    Google Scholar 

  • Solomon M (1976) “Volcanic” massive sulphide deposits and their host rocks — a review and an explanation. In:Wolf KA (ed) Handbook of stratbound and stratiform ore deposits, II. Regional studies and specific studies. Elsevier, Amsterdam, pp 21–50

    Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea floor metamorphism, heat and mass transfer. Contrib Mineral Petrol 42: 287–304

    Google Scholar 

  • Stanton RL (1985) Stratiform ores and geological processes. Roy Soc NSW 118: 77–100

    Google Scholar 

  • Stanton RL (1990) Magmatic evolution and the ore type-lava affiliations of volcanic exhalative ores. Aust Inst Min Metall Monogr 15: 101–107

    Google Scholar 

  • Stanton RL (1994) Ore elements in arc lavas. Clarendon Press, Oxford, 391pp

    Google Scholar 

  • Stern RJ, Lin P-N, Morris JD, Jackson MC, Fryer P, Bloomer SH, Ito E (1990) Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins. Earth Planet Sci Lett 100: 210–225

    Google Scholar 

  • Stolz AJ (1995) Geochemistry of the Mount Windsor Volcanics: implications for the tectonic setting of Cambro-Ordovician volcanic-hosted massive sulfide mineralization in northeastern Australia. Econ Geol 90: 1080–1097

    Google Scholar 

  • Stolz AJ, Davies GR, Crawford AJ, Smith IEM (1993) Sr, Nd and Pb isotopic compositions of calc-alkaline and peralkaline silicic volcanics from the D'Entrecasteaux Islands, Papua New Guinea, and their tectonic significance. Mineral Petrol 47: 103–126

    Google Scholar 

  • Strens MR, Cann JR (1986) A fracture-loop thermal balance model of black smoker circulation. Tectonophysics 122: 307–324

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Sac Spec Publ 42: 313–345

  • Sun S-S, Wyborn D (1994) Source character and magmatic processes in some Au, Cu and Sn provinces; a trace element and isotope approach. Geol Soc Aust Abstr 12: 421

    Google Scholar 

  • Talent JA, Berry WBN, Boucot AJ (1975) Correlation of Silurian rocks of Australia, New Zealand, and New Guinea. Geol Soc Am Spec Pap 150, 108pp

  • Urabe T (1987) Kuroko deposit modeling based on magmatic hydrothermal theory. Min Geol 37: 159–176

    Google Scholar 

  • Urabe T, Sato T (1978) Kuroko deposits of the Kosaka mine, northeast Honshu, Japanproducts of submarine hot springs on the Miocene sea floor. Econ Geol 73: 161–179

    Google Scholar 

  • VandenBerg AHM, O'Shea PJ (1981) Explanatory notes on the Bairnsdale 1: 250,000 geological map. Victoria Geol Surv Rept 65, 61ppVandenBerg AHM Bolger PF, O'Shea PJ (1984) Geology and mineral exploration of the Limestone Creek area, northeast Victoria. Victoria Geol Surv Rept 72, 59pp

  • Volpe AM, Macdougall JD, Hawkins JW (1988) Lau Basin basalts (LBB): trace element and Sr-Nd isotopic evidence for heterogeneity in back-arc basin mantle. Earth Planet Sci Lett 90: 174–186

    Google Scholar 

  • Wark DA, Miller CF (1993) Accessory mineral behaviour during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash Pluton, southeastern California, U.S.A. Chem Geol 110: 49–67

    Google Scholar 

  • White AJR, Chappell BW (1988) Some supracrustal (S-type) granites of the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci 79: 169–181

    Google Scholar 

  • White AJR, Williams IS, Chappell BW (1976) The Jindabyne thrust and its tectonic, physiographic and petrogenetic significance. J Geol Soc Aust 23: 105–112

    Google Scholar 

  • Whitford DJ, McPherson WPA, Wallace DB (1989) Geochemistry of the host rocks to the volcanogenic massive sulfide deposit at Que River, Tasmania. Econ Geol 84: 1–21

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin-Hyman, London, 466pp

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20: 325–344

    Google Scholar 

  • Wyborn D (1992) The tectonic significance of Ordovician magmatism in the eastern Lachlan Fold Belt. Tectonophysics 214: 177–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolz, A.J., Davies, G.R. & Allen, R.L. The importance of different types of magmatism in VHMS mineralisation: evidence from the geochemistry of the host volcanic rocks to the Benambra massive sulphide deposits, Victoria, Australia. Mineralogy and Petrology 59, 251–286 (1997). https://doi.org/10.1007/BF01161862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161862

Keywords

Navigation