Skip to main content
Log in

Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The ‘dolomite problem’ has a long history and remains one of the most intensely studied and debated topics in geology. Major amounts of dolomite are not directly forming today from seawater. This observation has led many investigators to develop geochemical/hydrologic models for dolomite formation in diagenetic environments. A fundamental limitation of the current models for the growth of sedimentary dolomite is the dearth of kinetic information for this phase, in contrast to that available for calcite and aragonite.

We present a simple kinetic model describing dolomite growth as a function of supersaturation using data from published high temperature synthesis experiments and our own experimental results. This model is similar in form to empirical models used to describe precipitation and dissolution rates of other carbonate minerals. Despite the considerable uncertainties and assumptions implicit in this approach, the model satisfies a basic expectation of classical precipitation theory, i.e., that the distance from equilibrium is a basic driving force for reaction rate. The calculated reaction order is high (~ 3), and the combined effect of high order and large activation energy produces a very strong dependence of the rate on temperature and the degree of supersaturation of aqueous solutions with respect to this phase.

Using the calculated parameters, we applied the model to well-documented case studies of sabkha dolomite at Abu Dhabi (Persian Gulf), and organogenic dolomite from the Gulf of California. Growth rates calculated from the model agree with independent estimates of the age of these dolomites to well within an order of magnitude. A comparison of precipitation rates in seawater also shows the rate of dolomite precipitation to converge strongly with that of calcite with increasing temperature. If correct, this result implies that dolomite may respond to relatively modest warming of surface environments by substantial increases in accumulation rate, and suggests that the distribution of sedimentary dolomite in the rock record may be to some extent a temperature signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker P. A. and Kastner M. (1981) Constraints on the formation of sedimentary dolomite.Science 213, 214–216.

    Google Scholar 

  • Baltzer F., Kenig F., Boichard R., Plaziat J. C., and Burser B. H. (1994) Organic matter distribution, water circulation and dolomitization beneath the Abu Dhabi Sabkha (United Arab Emirates). InDolomites: A Volume in Honour of Dolomieu (eds. B. H. Purser, M. E. Tucker, and D. H. Zenger), Spec. Pubs. Int. Assoc. Sed. 21, pp. 409–427. Blackwell, Oxford.

    Google Scholar 

  • Bates N. R. and Brand U. (1990) Secular variation of calcium carbonate mineralogy; an evaluation of ooid and micrite chemistries.Geologische Rundschau 79, 27–46.

    Google Scholar 

  • Berner R. A. (1980)Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Berner R. A., Lasaga, A. C., and Garrels R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years.Amer. J. Sci. 283, 641–683.

    Google Scholar 

  • Burton E. A. and Walter L. M. (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control?Geology (Boulder)15, 111–114.

    Google Scholar 

  • Clegg S. L. and Whitfield M. (1991) Activity coefficients in natural waters. InActivity Coefficients in Electrolyte Solutions (ed. K. S. Pitzer), pp. 279–434. CRC Press, Boca Raton.

    Google Scholar 

  • Compton J. S. (1980) Degree of supersaturation and precipitation of organogenic dolomite.Geology (Boulder)16, 318–321.

    Google Scholar 

  • Fischer A. G. (1984) The two Phanerozoic super cycles. InCatastrophes in Earth History (ed. W. A. Berggren and J. A. Vancouvering), pp. 129–148. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Gaines A. M. (1968) An Experimental Investigation of the Kinetics and Mechanism of the Formation of Dolomite. Ph.D. dissertation, University of Chicago.

  • Gaines A. M. (1974) Protodolomite synthesis at 100 °C and atmospheric pressure.Science 183, 518–520.

    Google Scholar 

  • Gaines A. M. (1980) Dolomitization kinetics, recent experimental studies. InConcepts and Models of Dolomitization (ed. D. H. Zenger, J. B. Dunham, and R. L. Ethington), Spec. Pub. Soc. Econ. Paleon. Min. 28, pp. 81–86. Tulsa, OK.

  • Garrels R. M. and Mackenzie F. T. (1971)Evolution of Sedimentary Rocks. Norton, NY.

    Google Scholar 

  • Garrels R. M. and Thompson M. E. (1962) A chemical model for sea water at 25 °C and one atmosphere total pressure.Amer. J. Sci. 260, 57–66.

    Google Scholar 

  • Gieskes J. M., Elderfield H., Lawrence J. R., Johnson J., Meyers B., and Campbell A. (1982) Geochemistry of interstitial waters and sediments, Leg 64, Gulf of California. InInitial Reports of the Deep Sea Drilling Project, Volume 64 (eds. J. R. Curray, D. G. Mooreet al.), pp. 675–694. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Given R. K. and Wilkinson B. H. (1987) Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation.J. Sed. Pet. 57, 457–469.

    Google Scholar 

  • Goldsmith J. R. and Heard H. C. (1961) Subsolidus relations in the system CaCO3-MgCO3.J. Geol. 69, 45–74.

    Google Scholar 

  • Graf D. L. and Goldsmith J. R. (1955) Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures.Geochim. Cosmochim. Acta 7, 109–128.

    Google Scholar 

  • Graf D. L. and Goldsmith J. R. (1956) Some hydrothermal syntheses of dolomite and protodolomite.J. Geol. 64, 173–186.

    Google Scholar 

  • Greenberg J. P. and Møller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentrations from 0 to 250 °C.Geochim. Cosmochim. Acta 53, 2503–2518.

    Google Scholar 

  • Hallam A. (1984) Pre-quaternary sea-level changes.Ann. Rev. Earth Planet. Sci. 12, 205–243.

    Google Scholar 

  • Hardie L. A. (1996) Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.Geology (Boulder)24, 279–283.

    Google Scholar 

  • He S. and Morse J. W. (1993) The carbonic acid system and calcite solubility in aqueous Na-K-Ca- Mg-Cl-SO4 solutions from 0 to 90 °C.Geochim. Cosmochim. Acta 57, 3533–3554.

    Google Scholar 

  • Helgeson H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures.Amer. J. Sci. 267, 729–804.

    Google Scholar 

  • Huang W., Longo J. M., and Prevear D. R. (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer.Clays and Clay Minerals.41, 162–177.

    Google Scholar 

  • Inskeep W. P. and Bloom P. P. (1985) An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8.Geochim. Cosmochim. Acta 49, 2165–2180.

    Google Scholar 

  • Johnson J. W., Oelkers E. H., and Helgeson H. C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C.Computers & Geosciences 18, 899–947.

    Google Scholar 

  • Kasting J. F. and Ackerman T. P. (1986) Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere.Science 234, 1383–1385.

    Google Scholar 

  • Kasting J. F. (1993) Earth's early atmosphere.Science 259, 920–926.

    Google Scholar 

  • Katz A. and Matthews A. (1977) The dolomitization of CaCO3, an experimental study at 252–295 °C.Geochim. Cosmochim. Acta 41, 297–308.

    Google Scholar 

  • Kelts K. and McKenzie J. (1982) Diagenetic dolomite formation in Quaternary anoxic diatomaceous muds of Deep Sea Drilling Project Leg 64, Gulf of California. InInitial Reports of the Deep Sea Drilling Project, Volume 64 (eds. J. R. Curray, D. G. Mooreet al.), pp. 553–569. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Kenig F. (1991) Sédimentation, Distribution et Diagenèse de la Matière Organique dans un Environnement Carbonaté Hypersalin: le Système Lagune-Sabkha d'Abu Dhabi. Thèse Institut Français du Pétrole Université d'Orléans.

  • Kharuka Y. K., Gunter S. D., Aggarwal P. K., Perkins E. H., and DeBraal J. D. (1988) SOLMINEQ.88: A Computer Program for Geochemical Modeling of Water-Rock Interactions, U.S.G.S Water-Resources Investigations Report 88-4227.

  • Land L. S. (1985) The origin of massive dolomite.J. Geol. Educ. 33, 112–125.

    Google Scholar 

  • Lasaga A. C., Berner R. A., and Garrels, R. M. (1985) An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. InThe Carbon Cycle and Atmospheric CO 2:Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker), pp. 397–411. Geophys. Monogr. Series 32, Amer. Geophy. Union.

  • Li, Y. H. and Gregory S. (1974) Diffusion of ions in seawater and in deep-sea sediments.Geochim. Cosmochim. Acta 38, 703–714.

    Google Scholar 

  • Lumsden D. N., Shipe L. G., and Lloyd R. V. (1989) Mineralogy and Mn geochemistry of laboratory-synthesized dolomite.Geochim. Cosmochim. Acta 53, 2325–2329.

    Google Scholar 

  • Mackenzie F. T. and Morse J. W. (1992) Sedimentary carbonates through Phanerozoic time.Geochim. Cosmochim. Acta 56, 3281–3295.

    Google Scholar 

  • Mackenzie F. T. and Pigott J. P. (1981) Tectonic controls of Phanerozoic rock cycling.J. Geol. Soc. London 138, 183–196.

    Google Scholar 

  • McKenzie J. A. (1991) The dolomite problem: an outstanding controversy. InControversies in Modern Geology (eds. D. W. Müller, J. A. McKenzie, and H. Weissert), pp. 37–54. Academic Press, London.

    Google Scholar 

  • Møller N. (1988) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration.Geochim. Cosmochim. Acta 52, 821–837.

    Google Scholar 

  • Morse J. W. and Mackenzie F. T. (1990)Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48. Elsevier, Amsterdam.

    Google Scholar 

  • Morse J. W. (1983) The kinetics of calcium carbonate dissolution and precipitation. InCarbonates: Mineralogy and Chemistry (ed. R. J. Reeder), Rev. in Min. Vol. 11, pp. 227–264. Min. Soc. Amer., Washington, D.C.

    Google Scholar 

  • Morse J. W., Wang Q., and Tsio, M. Y. (1996) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater.Geology (in press).

  • Mucci A. and Morse J. W. (1983) The incorporation of Mg2+ and Sr2+ in calcite overgrowths: influences of growth rate and solution composition.Geochim. Cosmochim. Acta 47, 217–233.

    Google Scholar 

  • Nancollas G. H. and Reddy M. M. (1971) Crystallization of calcium carbonate: Part II. Calcite growth mechanisms.J. Colloid Interface Sci. 37, 824–830.

    Google Scholar 

  • Pabalan R. T. and Pitzer K. S. (1987) Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O.Geochim. Cosmochim. Acta 51, 2429–2443.

    Google Scholar 

  • Pitzer K. S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations.J. Phys. Chem. 77, 268–277.

    Google Scholar 

  • Plummer L. N., Wigley T. M. L., and Parkhurst D. L. (1978) The kinetics of dissolution in CO2-water systems at 5 °C to 60 °C and 0.0 to 1.0 atm CO2.Amer. J. Sci. 278, 179–216.

    Google Scholar 

  • Purser B. H. and Seibold E. (1973) The principal environmental factors influencing Holocene sedimentation and diagensis in the Persian Gulf. InThe Persian Gulf; Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea (ed. B. H. Purser), pp. 1–9. Spring-Verlag, Berlin.

    Google Scholar 

  • Purser B. H., Tucker M. E., and Zenger D. H. (1994) Problems, progress, and future research concerning dolomites and dolomitization. InDolomites: A volume in honour of Dolomieu (eds. B. H. Purser, M. E. Tucker, and D. H. Zenger), Spec. Pubs. Int. Assoc. Sed. 21, pp. 3–20. Blackwell, Oxford.

    Google Scholar 

  • Pytkowicz R. M. (1965) Rates of inorganic calcium carbonate nucleation.J. Geol. 73, 196–199.

    Google Scholar 

  • Reddy M. M. (1986) Effect of magnesium ions on calcium carbonate nucleation and crystal growth in dilute aqueous solutions at 25 °C. InStudies in Diagenesis (ed. F. A. Mumpton), pp. 169–182. U.S.G.S. Bull. 1578.

  • Rickard D. T. (1975) Kinetics and mechanism of pyrite formation at low temperatures.Amer. J. Sci. 275, 636–652.

    Google Scholar 

  • Rimstidt J. D. and Barnes H. L. (1980) The kinetics and silica-water reactions.Geochim. Cosmochim. Acta 44, 1683–1699.

    Google Scholar 

  • Ronov A. B. (1964) Common tendencies in the chemical evolution of the Earth's crust, ocean and atmosphere.Geochem. Intl. 1, 713–737.

    Google Scholar 

  • Rosenberg P. E. and Holland H. D. (1964) Calcite-dolomite-magnesite stability relations in solutions at elevated temperatures.Science 145, 700–701.

    Google Scholar 

  • Rosenberg P. E., Burt D. M., and Holland H. D. (1966) Calcite-dolomite magnesite stability relations in solutions: the effect of ionic strength.Geochim. Cosmochim. Acta 31, 391–396.

    Google Scholar 

  • Sandberg P. A. (1975) New interpretation of great salt ooids and of ancient nonskeletal carbonate mineralogy.Sedimentology 22, 497–538.

    Google Scholar 

  • Sandberg P. A. (1985) Nonskeletal aragonite and pCO2 in the Phanerozoic and Proterozoic. InThe Carbon Cycle and Atmospheric CO 2:Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker), Geophys. Monogr. Series 32, pp. 585–594. Amer. Geophy. Union.

  • Sibley D. F., Dedoes R. E., and Bartlett T. R. (1987) Kinetics of dolomitization.Geology (Boulder)15, 1112–1114.

    Google Scholar 

  • Sibley D. F. (1990) Unstable to stable transformations during dolomitization.J. Geol. 98, 739–748.

    Google Scholar 

  • Sibley D. F., Nordeng S. H., Borkowski M. (1994) Dolomitization kinetics in hydrothermal bombs and natural settings.J. Sed. Research A64, 630–637.

    Google Scholar 

  • Söhnel O. and Garside J. (1992)Precipitation: Basic Principles and Industrial Applications. Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Vail P. R., Mitchum R. W., and Thompson S. (1977) Seismic stratigraphy and global changes of sea level. InGlobal Cycles of Relative Changes of Sea Level, pp. 83–97, A.A.P.G. Mem. 26, Tulsa, OK.

  • Veizer J. (1973) Sedimentation in geologic history: recycling vs. evolution or recycling with evolution.Contrib. Mineral. Petrol. 38, 261–278.

    Google Scholar 

  • Wilkinson B. H., Owen R. M., and Carroll A. R. (1985) Submarine weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine oolites.J. Sed. Pet. 52, 47–52.

    Google Scholar 

  • Wilkinson B. H. and Algeo T. J. (1989) Sedimentary carbonate record of calcium magnesium cycling.Amer. J. Sci. 289, 1158–1194.

    Google Scholar 

  • Wilkinson B. H. and Walker J. C. G. (1989) Phanerozoic cycling of sedimentary carbonate.Amer. J. Sci. 289, 525–548.

    Google Scholar 

  • Wolery T. J. (1992) EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user's guide, and related documentation (version 7.0), UCRL-MA-110662 PT III. Lawrence Livermore National Laboratory.

  • Wollast R. (1990) Rates and mechanism of dissolution of carbonates in the system CaCO3⧎CO3.Amer. J. Sci. 289, 525–548.

    Google Scholar 

  • Zenger D. H. (1989) Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation.J. Sed. Pet. 59, 162–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvidson, R.S., Mackenzie, F.T. Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquat Geochem 2, 273–298 (1996). https://doi.org/10.1007/BF01160046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160046

Key words

Navigation