Skip to main content
Log in

Abstract

Vibrational spectra and thermodynamic properties of ices and the cubic structure I (CS-I) clathrate hydrate have been studied by the lattice dynamics method. The phonon density of states for the empty hydrate framework and for xenon hydrate have been determined; the vibrational frequencies of the guest molecules in large and small cavities have been found. The stability of the hydrate with respect to the external pressure at low temperatures and its thermodynamic stability at temperatures around 0°C have been studied. It has been found that the empty hydrate framework is unstable in certain temperature and pressure regions. A definite degree of occupation of the large cavities by the guest molecules is necessary for the hydrate to become stable. It has been found that there is a maximum of the critical temperature at which the hydrate exists, which is a function of the external pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. A. Dyadin, I. S. Terekhova, T. M. Polyanskaja, and L. S. Aladko:Zh. Struct. Khim. 17, 655 (1976).

    Google Scholar 

  2. Yu. A. Dyadin and L. S. Aladko:Zh. Struct. Khim. 18, 51 (1977);C. A. 87, 12297m (1977).

    Google Scholar 

  3. D. W. Davidson and J. A. Ripmeester:J. Glaciology 21, 33 (1978).

    Google Scholar 

  4. D. W. Davidson, inWater — A comprehensive treatise. Vol 2, p. 115, 1973.

  5. G. A. Jeffrey and R. K. McMullan:Prog. Inorg. Chem,8, 43 (1967).

    Google Scholar 

  6. D. N. Clew and N. S. Rath:J. Chem. Phys. 44, 1710 (1966).

    Google Scholar 

  7. D. A. Wilms and A. A. Van Houte:Desalination 12, 373 (1973).

    Google Scholar 

  8. R. K. McMullan and G. A. Jeffrey:J. Chem. Phys. 42, 2725 (1965).

    Google Scholar 

  9. S. R. Gough and D. W. Davidson:Can. J. Chem. 49, 2691 (1971).

    Google Scholar 

  10. J. A. Ripmeester and D. W. Davidson:J. Mol. Struct. 75, 67 (1981).

    Google Scholar 

  11. D. W. Davidson, Y. P. Handa, and J. A. Ripmeester:J. Phys. Chem. 90, 6549 (1986).

    Google Scholar 

  12. J. H. Van der Waals and J. C. Platteeuw:Adv. Chem. Phys. 2, 1 (1959).

    Google Scholar 

  13. D. W. Davidson, S. K. Garg, S. R. Gough, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and J. A. Ripmeester:J. Incl. Phenom. 2, 231 (1984).

    Google Scholar 

  14. M. Von Stackelberg:Z. Electrochem. 58, 104 (1954).

    Google Scholar 

  15. R. M. Barrer and W. I. Stuart:Proc. Roy. Soc. A242, 172 (1957).

    Google Scholar 

  16. Yu. A. Dyadin and K. A. Udachin:Zh. Struct. Khim. 28, 75 (1987).

    Google Scholar 

  17. J. A. Ripmeester, J. S. Tse, C. J. Ratcliffe, and B. M. Powell:Nature 325, 135 (1987).

    Google Scholar 

  18. Yu. A. Dyadin, I. I. Yakovlev, I. V. Bondaryuk, L. S. Aladko, and L. S. Zelenina:Dokl. Akad. Nauk SSSR 203, 1068 (1972).

    Google Scholar 

  19. L. A. Gaponenko, S. F. Solodovnikov, Yu. A. Dyadin,et al.:Zh. Struct. Khim. 25, 175 (1984).

    Google Scholar 

  20. M. Yu. Lavrentiev, V. R. Belosludov, Yu. A. Dyadin, and G. N. Chekhova:Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 2, 15 (1987).

    Google Scholar 

  21. Yu. A. Dyadin, V. R. Belosludov, G. N. Chekhova, and M. Yu. Lavrentiev:J. Incl. Phenom. 5, 195 (1987).

    Google Scholar 

  22. J. S. Tse, M. L. Klein, and I. R. McDonald:J. Chem. Phys. 78, 2096 (1983).

    Google Scholar 

  23. J. S. Tse, M. L. Klein, and I. R. McDonald:J. Phys. Chem. 87, 4198 (1983).

    Google Scholar 

  24. J. S. Tse, M. L. Klein, and I. R. McDonald:J. Chem. Phys. 81, 6146 (1984).

    Google Scholar 

  25. J. S. Tse and M. L. Klein:Phys. Rev. Lett. 58, 1672 (1987).

    PubMed  Google Scholar 

  26. G. Venkataraman and V. C. Sahni:Rev. Mod. Phys. 42, 409 (1970).

    Google Scholar 

  27. G. Nielson and S. A. Rice:J. Chem. Phys. 80, 4456 (1984).

    Google Scholar 

  28. V. R. Belosludov, M. Yu. Lavrentiev, S. A. Syskin, and Yu. A. Dyadin: Preprint No. 87-4, Inst. Inorg. Chem. Sib. Otd. Akad. Nauk SSSR. Novosibirsk, 1987.

  29. V. R. Belosludov, M. Yu. Lavrentiev, and S. A. Syskin:Phys. Stat. Sol. B 149, 133 (1988).

    Google Scholar 

  30. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans: inIntermolecular Forces, p. 331, Holland, 1981.

  31. B. Renker, inPhonons, p. 167, Paris, 1971.

  32. A. F. Goncharov:Uspekhi Fizicheskikh Nauk 152, 317 (1987).

    Google Scholar 

  33. T. Soma, H. Iwanami, and H. Matsuo:Solid State Commun. 42, 469 (1982).

    Google Scholar 

  34. O. Mishima, L. D. Calvert, and E. Whalley:Nature (London) 310, 343 (1984).

    Google Scholar 

  35. C. Malinowska-Adamska:Phys. Stat. Sol. (B) 143, 63 (1987).

    Google Scholar 

  36. T. Soma and H. Matsuo:Solid State Commun. 42, 447 (1982).

    Google Scholar 

  37. Yu. F. Makogon:Gidraty Prirodnyh Gazov (in Russian), 1974.

  38. V. R. Belosludov, Yu. A. Dyadin, G. N. Chekhova, B. A. Kolesov, and S. I. Fadeev:J. Incl. Phenom. 3, 243 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belosludov, V.R., Lavrentiev, M.Y., Dyadin, Y.A. et al. Dynamic and thermodynamic properties of clathrate hydrates. J Incl Phenom Macrocycl Chem 8, 59–69 (1990). https://doi.org/10.1007/BF01131288

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131288

Key words

Navigation