Skip to main content
Log in

Nonlinear stability-analysis of shell and contact-problems including branch-switching

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the analysis of nonlinear elastic shells often the stability and postbuckling behaviour governs the response. Here we discuss problems which also include contact constraints. A nonlinear cylindrical shell element is derived directly from the associated shell theory using one point integration and a stabilization technique. Within a general solution algorithm a simple but effective branch-switching procedure is presented. Additional considerations allow the treatment of bifurcation problems with contact constraints. Several examples of beam and shell problems show the performance of the developed algorithms and elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyris, J. H.; Scharpf, D. W. (1968): The SHEBA family of shell elements for the matrix displacement method. J. Royal Aeronaut. Soc. 72, 873–883

    Google Scholar 

  • Belytschko, T.; Tsay, C. S. (1983): A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. J. Numer. Methods. Eng. 19, 405–419

    Google Scholar 

  • Belytschko, T.; Tsay, C. S.; Lin, J.I. (1984): Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl. Mech. Eng. 42, 225–251

    Google Scholar 

  • Belytschko, T.; Liu, W. C.; Ong, J. S.-J.; Lam, D. (1985): Implementation and application of a 9-Node Lagrange shell element with spurious mode control. Comput. Struct. 20, 121–128

    Google Scholar 

  • Belytschko, T.; Liu, W. C.; Engelmann, B. E. (1986): The gamma-elements and related developments. In: Hughes, T. R. J.; Hinton, E. (eds.) Finite element methods for plate and shell structures, vol. 1: Swansea: Pineridge Press

    Google Scholar 

  • Berg, A. (1983): Beiträge zur geometrisch nichtlinearen Theorie und inkrementellen Finite-Element-Berechnung dänner elastischer Schalen. Techn. Rep. F 83/2, Inst. f. Baumechanik, Universität Hannover, FRG

    Google Scholar 

  • Crisfield, M. A. (1981): A fast incremental/iterative solution procedure that handles snap through. Comput. Struct. 13, 55–62

    Google Scholar 

  • Harte, R. (1982): Doppelt gekrümmte finite Dreieckelement für die lineare und geometrisch nichtlineare Berechnung allgemeiner Flächentragwerke. Techn. Rep. 82-10, Inst. Konstr. Ingenieurbau, Ruhr-Universität Bochum, FRG

    Google Scholar 

  • Harte, R.; Eckstein, U. (1986): Derivation of geometrically nonlinear finite shell elements via tensor notation. Int. J. Numer. Methods Eng. 23, 367–384

    Google Scholar 

  • Huy, H. D.; Werner, B. (1986): Linear variational inequalities with application to the buckling problem of the unilateral supported beam. Numer. Funct. Anal. Optimization 8, 357–382

    Google Scholar 

  • Kahn, R.; Wagner, W. (1987): Überkritische Berechnung ebener Stabtragwerke unter Berücksichtigung einer vollständig geometrisch nichtlinearen Theorie. Z. Angew. Math. Mech. 67, T197-T199

    Google Scholar 

  • Koiter, W. T. (1966): On the nonlinear theory of thin elastic shells. Proc. K. Ned. Akad. Wet. Ser. B 69, 1–54

    Google Scholar 

  • Naghdi, P. M. (1972): The theory of shells and plates. In: Truesdell, C. (ed.) Linear theories of elasticity and thermoelasticity. Linear and nonlinear theories of rods, plates and shells. Berlin, Heidelberg, New York: Springer 1984 (Handbuch der

    Google Scholar 

  • Nolte, L. P. (1983): Beitrag zur Herleitung und vergleichende Untersuchung geometrisch nichtlinearer Schalentheorien unter Beräcksichtigung groβer Rotationen. Mitt. Inst. f. Mechanik, No. 39, Ruhr-Universität Bochum, FRG

    Google Scholar 

  • Pica, A.; Wood, R. D. (1980): Postbuckling behaviour of plates and shells using a Mindlin shallow shell formulation. Comput. Struct. 12, 759–768

    Google Scholar 

  • Pietraszkiewicz, W. (1977): Introduction to the non-linear theory of shells. Mitt. aus dem Inst. f. Mechanik, Nr. 10, Ruhr-Universität Bochum, FRG

    Google Scholar 

  • Ramm, E. (1981): Strategies for tracing the nonlinear response near limit points. In: Wunderlich, W.; Stein, E.; Bathe, K. J. (eds.) Nonlinear finite element analysis in structural mechanics. Proc. Europe-US workshop, Ruhr-Universität Bochum, FRG, 1980, pp. 63–89. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Rheinboldt, W. C. (1981): Numerical analysis of continuation methods for nonlinear structural problems. Comput. Struct. 13, 103–113

    Google Scholar 

  • Riks, E. (1972): The application of Newtons method to the problem of elastic stability. J. Appl. Mech. 39, 1060–1066

    Google Scholar 

  • Riks, E. (1979): An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 15, 529–551

    Google Scholar 

  • Riks, E. (1984a): Bifurcation and stability, a numerical approach. In: Liu, W.; Belytschko, T.; Park, O. (eds.). Swansea: Pineridge Press

    Google Scholar 

  • Riks, E. (1984b): Some computational aspects of the stability analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 47, 219–259

    Google Scholar 

  • Rothert, H.; Idelberger, H.; Jacobi, W.; Niemann, L. (1985): On geometrically nonlinear contact problems with friction. Comput. Methods Appl. Mech. Eng. 51, 139–155

    Google Scholar 

  • Schweizerhof, K. H.; Wriggers, P. (1986): Consistent linearization for path following methods in nonlinear FE analysis. Comput. Methods Appl. Mech. Eng. 59, 261–279

    Google Scholar 

  • Simo, I.; Wriggers, P.; Schweizerhof, K.; Taylor, R. L. (1986): Finite deformation postbuckling analysis involving inelasticity and contact constraints. Int. J. Numer. Methods Eng. 23, 779–800

    Google Scholar 

  • Stein, E.; Berg, A.; Wagner, W. (1982): Different levels of nonlinear shell theory in finite element stability analysis. In: Ramm, E. (ed.) Buckling of shells. Proc. state-of-the-art colloquium, Universität Stuttgart, FRG. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Stein, E.; Wriggers, P. (1984): Stability of rods with unilateral constraints, a finite element solution. Comput. Struct. 19, 205–211

    Google Scholar 

  • Stein, E.; Wagner, W.; Wriggers, P. (1988): Concepts of modeling and discretization of elastic shells for nonlinear finite element analysis. In: Whiteman, J. R. (ed.) Proc. MAFELAP 1987 conf. London: Academic Press, pp. 205–232

    Google Scholar 

  • Timoshenko, S. P.; Woinowsky-Krieger, S. (1959): Theory of plates and shells. New York: McGraw-Hill

    Google Scholar 

  • Wagner, W. (1985): Eine geometrisch nichtlineare Theorie schubelastischer Schalen mit Anwendung auf Finite-Element-Berechnung von Durchschlag- und Kontaktproblemen. Techn. Rep. No F85/2, Inst. f. Baumechanik, Universität Hannover, FRG

    Google Scholar 

  • Wagner, W.; Wriggers, P.; Stein, E. (1985): A shear-elastic shell theory and finite element post-buckling analysis including contact. In: Szabo, I. (ed.) EUROMECH 200, pp. 381–404

    Google Scholar 

  • Wagner, W. (1988): Zur Formulierung eines Zylinderschalenelementes mit vollständig reduzierter Integration Z. Angew. Math. Mech. 68, 430–433

    Google Scholar 

  • Wagner, W.; Wriggers, P. (1988): A solution method for the calculation of postcritical branches. Eng. Comput. 5, 103–109

    Google Scholar 

  • Wriggers, P.; Simo, J. C. (1985): A note on tangent stiffness for fully nonlinear contact problems. Commun. Appl. Numer. Methods 1, 199–203

    Google Scholar 

  • Wriggers, P.; Wagner, W. (1985): Kurvenverfolgungsalgorithmen in der Strukturmechanik. Tech. Rep. No. 85/3, Inst. f. Baumechanik, Universität Hannover, FRG

    Google Scholar 

  • Wriggers, P.; Wagner, W.; Stein, E. (1987): Algorithms for nonlinear contact constraints with application to stability problems of rods and shells. Comput. Mech. 2, 1–16

    Google Scholar 

  • Wriggers, R.; Wagner, W. (1988): A solution method for the postcritical analysis of contact problems. In: Whiteman, J. R. (ed.) Proc. MAFELAP 1987 conf. pp. 91–101. London: Academic Press

    Google Scholar 

  • Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M. (1971): Reduced integration techniques in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290

    Google Scholar 

  • Zienkiewicz, O. C.; Bauer, J.; Morgan, K. (1977): A simple and efficient element for axisymmetric shells. Int. J. Numer. Methods Eng. 11, 1545–1558

    Google Scholar 

  • Zienkiewicz, O. C. (1977): The finite element method. London: McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, E., Wagner, W. & Wriggers, P. Nonlinear stability-analysis of shell and contact-problems including branch-switching. Computational Mechanics 5, 428–446 (1990). https://doi.org/10.1007/BF01113447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113447

Keywords

Navigation