Skip to main content
Log in

Thermally activated martensite in copper alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanisms of the thermally induced f c c-h c p transformation in Cu-Ge alloys have been investigated by hot-stage microscopy and TEM techniques. The growth and thickening processes for the transformation are best described in terms of isothermal martensite growth in which the h c p phase formation is controlled by the rapid propagation of fine platelets having thicknesses ranging from 5 to 30 nm. The transformation progresses by the repeated nucleation of thin platelets often in close proximity to existing platelets, thereby leading to a morphology termed “fault bundles” by other investigators. Individual h c p plates form by the rapid movement of a transformation interface defined by groups of partial dislocations emanating from grain boundaries and non-coherent twin boundaries, and gliding parallel to a given {1 1 1} matrix orientation. The nucleation kinetics are controlled by the thermally activated propagation of partial dislocations originating from boundary networks. It is concluded that short-range diffusion is necessary for the h c p phase to achieve an equilibrium composition, but does not control the rate at which platelets nucleate or propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hoffman, J. Ziegler andH. Hanemann,Z. Metallkde 42 (1952) 55.

    Google Scholar 

  2. G. A. Dreyer andD. H. Polohis,Trans. TMS-AIME 221 (1961) 1074.

    Google Scholar 

  3. P. S. Kotval andR. K. Honeycombe,Acta Metall. 16 (1968) 597.

    Google Scholar 

  4. M. B. Kasen, PhD dissertation, University of Washington (1965).

  5. S. D. Dahlgren, W. F. Flanagan andD. H. Polohis,Trans. TMS-AIMS 236 (1966) 1071.

    Google Scholar 

  6. P. S. Kotval, PhD thesis, University of Sheffield (England) (1965).

  7. P. R. Swann, “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1965) p. 131.

    Google Scholar 

  8. K. R. Kinsman, H. I. Aaronson andE. Eichen,Met. Trans. 2 (1971) 1041.

    Google Scholar 

  9. M. B. Kasen, R. Taggart andD. H. Polohis,Trans. Q. ASM 60 (2) (1967) 144.

    Google Scholar 

  10. D. S. Haley, R. Taggart andD. H. Polohis,Scripta Metall. 2 (1968) 585.

    Google Scholar 

  11. A. Horsewell, B. Ralph andP. R. Howell,Phys. Status Solidi 29 (1975) 587.

    Google Scholar 

  12. A. Horsewell, P. R. Howell andB. Ralph, “Grain Boundaries”, Proceedings of Spring Residential Conference, Institution of Metallurgists Series 3 No. 5 (1976) p. B6.

  13. G. B. Olson andM. Cohen,Met. Trans. 7A (1976) 1897.

    Google Scholar 

  14. Idem, ibid. 7A (1976) 1915.

    Google Scholar 

  15. J. A. Hren andG. Thomas,Trans. TMS-AIMS 227 (1963) 308.

    Google Scholar 

  16. E. Votava,J. Inst. Metals 90 (1961) 129.

    Google Scholar 

  17. J. M. Howe, H. I. Aaronson andR. Gronsky,Acta Metall. 33 (4) (1985) 639.

    Google Scholar 

  18. Idem, ibid. 33 (4) (1985) 649.

    Google Scholar 

  19. H. I. Aaronson, in “Decomposition of Austenite by Diffusional Processes”, edited by V. F. Zackay and H. I. Aaronson (Interscience, New York, 1962) p. 397.

    Google Scholar 

  20. A. Clement andO. Coulomb,Phys. Status Solidi 21 (1967) K97.

    Google Scholar 

  21. T. V. Nordstrom andC. R. Barrett,Acta Metall. 17 (1969) 139.

    Google Scholar 

  22. S. Takeuchi andT. Homme,Sci. Rep. Res. Inst., Tohoku Univ. 9A (1957) 492.

    Google Scholar 

  23. Idem, ibid. 9A (1957) 508.

    Google Scholar 

  24. B. A. Bilby,Phil. Mag. 44 (1953) 782.

    Google Scholar 

  25. Z. S. Basinski andJ. W. Christian,ibid. 44 (1953) 791.

    Google Scholar 

  26. A. Seeger,Z. Metallkde 44 (1953) 247.

    Google Scholar 

  27. Idem, ibid. 47 (1956) 653.

    Google Scholar 

  28. H. Suzuki,Sci. Rep. Res. Inst., Tohoku Univ. A4 (1952) 455.

    Google Scholar 

  29. P. B. Hirsch, A. Howe, R. B. Nicholson, D. W. Pashley andM. J. Whelan, “Electron Microscopy of Thin Crystals”, (Butterworths, Washington, 1965).

    Google Scholar 

  30. A. Kelly andR. B. Nicholson,Prog. Mater. Sci. 10 (1963) 151.

    Google Scholar 

  31. J. D. Embury andR. B. Nicholson,Acta Metall. 13 (1965) 403.

    Google Scholar 

  32. P. J. Moroz Jr,D. H. Polohis andR. Taggart,Metallography 2 (1969) 385.

    Google Scholar 

  33. P. J. Moroz, R. Taggart andD. H. Polohis,Mater. Sci. Eng. 79 (1986) 201.

    Google Scholar 

  34. L. Delaey,Phys. Status Solidi 25 (1968) 697.

    Google Scholar 

  35. G. Thomas, W. L. Bell andH. M. Otte,ibid. 12 (1965) 353.

    Google Scholar 

  36. R. Gevers, J. van Landuyt andS. Amelinckx,ibid. 18 (1966) 343.

    Google Scholar 

  37. M. S. Patterson,J. Appl. Phys. 23 (1952) 805.

    Google Scholar 

  38. Y. Ishida andM. H. Brown,Acta Metall. 15 (1967) 857.

    Google Scholar 

  39. Y. Ishida, T. Hasegawa andF. Nagata,J. Appl. Phys. 40 (1969) 2182.

    Google Scholar 

  40. B. Loberg andH. Norden,Acta Metall. 21 (1973) 213.

    Google Scholar 

  41. R. R. Cech andJ. H. Holloman,Trans. TMS-AIME 197 (1953) 615.

    Google Scholar 

  42. C. H. Shin, B. L. Averbach andM. Cohen,ibid. 203 (1955) 183.

    Google Scholar 

  43. R. C. Pond, “Grain Boundary Structure and Kinetics”, ASM Materials Science Seminar, Milwaukee, 1979 (ASM, Metals Park, Ohio, 1980) p. 13.

    Google Scholar 

  44. K. H. G. Ashbee andL. F. Vassamillet,Mellon Inst. Rep. (April 1966).

  45. L. Brown,Phil. Mag. 10 (1964) 441.

    Google Scholar 

  46. G. B. Olson andM. Cohen,Met. Trans. 7A (1976) 1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroz, P.J., Taggart, R. & Polonis, D.H. Thermally activated martensite in copper alloys. J Mater Sci 22, 839–852 (1987). https://doi.org/10.1007/BF01103519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103519

Keywords

Navigation