Skip to main content
Log in

A nonholonomic Laplace operator

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

In this paper first the Laplace operator on a completely nonholonomic Riemannian manifold is defined in an invariant manner and its properties are considered. The method presented for studying it, as well as for the study of other hypoelliptic operators, involves the use of the geometry of nonholonomic manifolds. The nonholonomic metric (Carnot-Carathéodory metric), the Carathéodory measure, and hypoharmonic functions are defined. A theorem on the comparison of the spectra is proved and the connection is established between the bases of eigenfunctions of the ordinary and nonholonomic Laplacians. Conjectures are formulated on the principal term of the spectral asymptotic expansion of the nonholonomic Laplacian, on the structure of the wave fronts, and on the propagation of singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems. Geometry of distributions and variational problems,” Itogi Nauki i Tekhniki, Sovrem. Probl. Mat. Fundam. Napravl.,16, 5–85 (1987).

    Google Scholar 

  2. A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic problems in the theory of distributions,” Acta Appl. Math.,12, No. 2, 181–209 (1988).

    Google Scholar 

  3. A. D. Aleksandrov, “Investigations on the maximum principle. I–III,” Izv. Vyssh. Uchebn. Zaved. Matematika, No. 5, 126–157 (1958); No. 3, 3–12 (1959); No. 5, 16–32 (1959).

    Google Scholar 

  4. F. Treves, Introduction to the Theory of Pseudodifferential and Fourier Integral Operator, Vols. 1, 2, Plenum Press, New York (1980).

    Google Scholar 

  5. P. K. Rashevskii, “On linking two arbitrary points of a completely nonholonomic space by an admissible curve,” Uchen. Zap. Moskov. Ped. Inst. Libknekhta, Ser. Fiz.-Mat. Nauk, No. 2, 83–94 (1938).

    Google Scholar 

  6. J. Mitchell, “On Carnot—Carathéodory metrics,” J. Differential Geom.,21, No. 1, 35–45 (1985).

    Google Scholar 

  7. V. Ya. Gershkovich, “Two-sided estimates of metrics generated by absolutely nonholonomic distributions on Riemannian manifolds, Dokl. Akad. Nauk SSSR,278, No. 5, 1040–1044 (1984).

    Google Scholar 

  8. V. Ya. Gershkovich, “Estimates for ɛ-balls of nonholonomic metrics,” in: Global Analysis and Nonlinear Equations [in Russian], New Results in Global Analysis, Voronezh. Gos. Univ., Voronezh (1988), pp. 44–57.

    Google Scholar 

  9. L. Hörmander, The Analysis of Linear Partial Differential Operators, I–IV, Springer, Berlin (1983–1985).

    Google Scholar 

  10. A. Connes, “Sur la théorie non commutative de l'intégration,” in: Algèbres d'Opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math., No. 725, Springer, Berlin (1979), pp. 19–143.

    Google Scholar 

  11. M. A. Shubin, “The spectrum and its distribution function for a transversally elliptic operator,” Funkts. Anal. Prilozhen.,15, No. 1, 90–91 (1981).

    Google Scholar 

  12. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I, II, Interscience, New York (1963; 1969).

    Google Scholar 

  13. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York (1969).

    Google Scholar 

  14. G. Métivier, “Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques,” Comm. Partial Differential Equations,1, No. 5, 467–519 (1976).

    Google Scholar 

  15. V. Ya. Gershkovich, “The penalty function method in problems with nonholonomic constraints,” in: Application of Topology in Modern Analysis [in Russian], New Results in Global Analysis, Voronezh. Gos. Univ., Voronezh (1985), pp. 138–144.

    Google Scholar 

  16. L. Auslander, Lecture Notes on Nil-Theta Functions, Conference Board of the Mathematical Sciences, No. 34, Amer. Math. Soc, Providence (1977).

    Google Scholar 

  17. A. M. Vershik and V. Ya. Gershkovich, “Geometry of the nonholonomic sphere of three-dimensional Lie groups,” in: Geometry and the Theory of Singularities in Nonlinear Equations [in Russian], New Results in Global Analysis, Voronezh. Gos. Univ., Voronezh (1987), pp. 61–75.

    Google Scholar 

  18. H. Federer, Geometric Measure Theory, Springer, New York (1969).

    Google Scholar 

  19. M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton (1981).

    Google Scholar 

  20. D. W. Stroock, “The Malliavin calculus and its application to second order parabolic differential equations. I; II,” Math. Systems Theory,14, 25–65; 141–171 (1981).

    Google Scholar 

  21. B. Gaveau, “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math.,139, No. 1–2, 95–153 (1977).

    Google Scholar 

  22. A. M. Vershik, “The geometry of the nonholonomic sphere and the Gaussian measure on the Heisenberg group,” Uspekhi Mat. Nauk,42, No. 4, 138 (1987).

    Google Scholar 

Download references

Authors

Additional information

Translated from Problemy Matematicheskogo Analiza, No. 11, pp. 96–108, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vershik, A.M., Gershkovich, V.Y. A nonholonomic Laplace operator. J Math Sci 64, 1289–1296 (1993). https://doi.org/10.1007/BF01098021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01098021

Keywords

Navigation