Skip to main content
Log in

Stability of infinite systems of stochastic equations

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

A study is presented of processes with local interaction and infinite systems of Itô equations, which are small perturbations of independent processes at each point of a lattice with noncompact set of values. A survey of results and a complete exposition are devoted to the technique of cluster expansions, which uses estimates of the Lyapunov function type. This technique permits total control over the temporal evolution of the system and, in particular, enables one to prove that the temporal evolution is exponentially convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. Ya. Basis, “On stationarity and periodicity of multicomponent Markov processes with local interaction,” in: Multicomponent Random Processes [in Russian], Moscow (1978), pp. 31–46.

  2. Yu. K. Belyaev, Yu. I. Gromak, and V. A. Malyshev, “On invariant random boolean fields,” Mat. Zametki,6, No. 5, 555–566 (1969).

    Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).

    Google Scholar 

  4. L. N. Vasershtein, “Markov processes on a countable product of spaces, describing large systems of automata,” Probl. Peredachi Inf.,5, No. 3, 64–72 (1969).

    Google Scholar 

  5. L. N. Vasershtein and A. M. Leontovich, “On invariant measures of certain Markov operators describing a homogeneous random medium,” Probl. Peredachi Inf.,6, No. 1, 71–80 (1970).

    Google Scholar 

  6. S. Watanabe and N. Ikeda, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam (1981).

    Google Scholar 

  7. Interacting Markov Processes and Their Application in Biology [in Russian], Collection of papers read at Seminar-School, Pushchino (1977, 1979, 1982, 1986).

  8. T. V. Girya, “Stabilization of stochastic solutions of a nonlinear parabolic equation with white noise,” Uspekhi Mat. Nauk,36, No. 2, 177–178 (1981).

    Google Scholar 

  9. Yu. L. Daletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  10. R. L. Dobrushin, “Description of a random field with the aid of conditional probabilities and conditions for its regularity,” Teor. Veroyatn. Primenen.,13, No. 2, 201–229 (1968).

    Google Scholar 

  11. R. L. Dobrushin, “Markov processes with a large number of locally interacting components-existence of a limit process and its ergodicity,” Probl. Peredachi Inf.,7, No. 2, 70–87 (1971).

    Google Scholar 

  12. A. I. Zhalis, “Gaussian Markov random sequences with local interaction,” Lit. Mat. Sb.,26, No. 1, 38–52 (1986).

    Google Scholar 

  13. I. A. Ignatyuk and V. A. Malyshev, “Cluster expansion for locally interacting Markov chains,” Vestn. Mosk. Gos. Univ., Ser. 1, No. 5, 3–7 (1988).

    Google Scholar 

  14. I. A. Ignatyuk and V. A. Malyshev, “Processes with local interaction and communication networks,” Probl. Peredachi Inf.,25, No. 1, 65–77 (1989).

    Google Scholar 

  15. I. A. Ignatyuk, V. A. Malyshev, and S. A. Molchanov, “Moment-closed processes with local interaction,” Preprint, Inst. Probl. Peredachi Inf. (1988).

  16. I. A. Ignatyuk and T. S. Turova, “Gaussian processes with local interaction,” in: Interacting Markov Processes and Their Application in Biology [in Russian], Collection of papers read at 4th Seminar-School, Pushchino, 1984, Pushchino (1986), pp. 13–25.

  17. Ya. Sh. Il'yasov and A. I. Komech, “Girsanov's theorem and ergodic properties of statistical solutions of nonlinear parabolic equations,” Trudy Sem. I. G. Petrovskii, Moskov. Gos. Univ., No. 12, 90–117 (1987).

    Google Scholar 

  18. V. M. Imaikin and A. I. Komech, “On large deviations of solutions of nonlinear stochastic equations,” Trudy Sem. I. G. Petrovskii, Moskov. Gos. Univ., No. 13, 177–196 (1988).

    Google Scholar 

  19. K. Ito and H. P. McKean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.

    Google Scholar 

  20. M. Ya. Kel'bert and I. M. Sukhov, “Existence and uniqueness conditions for a random field describing the state of a switching network,” Probl. Peredachi Inf.,13, No. 4, 50–71 (1983).

    Google Scholar 

  21. N. V. Krylov and B. L. Rozovskii, “On stochastic evolution equations,” Itogi Nauki Tekhn., Sovr. Probl. Mat.,14, 71–146 (1979).

    Google Scholar 

  22. R. Sh. Liptser and A. N. Shiryaev, Statistics of Random Processes. Nonlinear Filtration and Related Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  23. V. A. Malyshev and I. A. Ignatyuk, “Locally interacting processes with noncompact set of values,” Vestn. Mosk. Gos. Univ., Ser. 1, No. 2, 3–6 (1987).

    Google Scholar 

  24. V. A. Malyshev and M. V. Men'shikov, “Ergodicity, continuity, and analyticity of countable Markov chains,” Trudy Mosk. Mat. Obshch.,39, 3–48 (1979).

    Google Scholar 

  25. V. A. Malyshev and R. A. Minlos, Gibbs Random Fields. The Method of Cluster Expansions [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  26. V. A. Malyshev, V. A. Podorol'skii, and T. S. Turova, “Ergodicity of infinite systems of stochastic equations,” Mat. Zametki,45, No. 4, 78–88 (1989).

    Google Scholar 

  27. S. A. Pirogov, “Cluster expansions for systems of automata,” Probl. Peredachi Inf.,22, No. 4, 60–66 (1986).

    Google Scholar 

  28. B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Statistics of Random Processes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  29. O. N. Stavskaya and I. I. Pyatetskii-Shapiro, “On homogeneous networks of spontaneously active elements,” Probl. Kibernetiki (Nauka, Moscow),20, 91–106 (1968).

    Google Scholar 

  30. T. S. Turova, Diffusion Processes with Local Interaction [in Russian], Author's Abstract of Dissertation for the Degree of Candidate of Math.-Phys. Sciences, Moscow (1989).

  31. R. Z. Khas'minskii, Stability of Systems of Differential Equations with Randomly Perturbed Parameters [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  32. D. Stoyan, Qualitative Eigenschaften und Abschätzungen Stochastischer Modelle, Akademie-Verlag, Berlin, 1977.

    Google Scholar 

  33. R. Holley and D. Stroock, “Diffusions on an infinite dimensional torus,” J. Funct. Anal.,42, No. 1, 29–63 (1981).

    Google Scholar 

  34. C. T. Hsiao, “Stochastic processes with Gaussian interaction of components,” Z. Wahrsch. Gebiete,59, 39–53 (1982).

    Google Scholar 

  35. I. A. Ignatyuk, V. A. Malyshev, and V. Sidoravitchus, “Convergence of the method of stochastic quantization,” in: Proceedings of the 5th Vilnius Conference of Probability, NVS Science Press (1989), p. 1.

  36. T. Liggett, Interacting Particle Systems, Springer, New York, etc.

  37. G. Royer, “Processus de diffusion associe a certains modeles d'Asing a spin continus,” Z. Wahrsch. Verw. Gebiete,46, No. 2, 165–176 (1979).

    Google Scholar 

  38. W. D. Wick, “Convergence to equilibrium of the stochastic Heisenberg model,” Commun. Math. Phys.,81, No. 3, 361–377 (1981).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika, Vol. 27, pp. 79–128, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatyuk, I.A., Malyshev, V.A. & Turova, T.S. Stability of infinite systems of stochastic equations. J Math Sci 61, 2114–2151 (1992). https://doi.org/10.1007/BF01097527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01097527

Keywords

Navigation