Skip to main content
Log in

Synthesis of ammonia in high-frequency discharges. II. Synthesis of ammonia in a microwave discharge under various conditions

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The synthesis of ammonia from nitrogen-hydrogen plasma prepared using microwave discharge was studied by changing some experimental conditions, such as pressure (260–2600 Pa), power input (30–280 W), and nitrogen-hydrogen mixing ratio [H2/(N2+H2)=0−1.0]. The ammonia yield increased with decreasing pressure and saturated at lower pressures. When the power input and the nitrogen-hydrogen mixing ratio were changed, the maximum yield of ammonia was obtained at the optimum experimental conditions (power input ≈150W; H2/(N2+H2)≈0.75). Amounts of NH, H, and H2 in the plasma also changed by changing the experimental conditions. From the changes in ammonia yield and amounts of NH, H, and H2 by changing the experimental conditions, it is suggested that ammonia molecules are formed by the reaction of NH radicals not only with hydrogen atoms but also with hydrogen molecules. Otherwise, the formation and the decomposition of ammonia would occur simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Uyama and O. Matsumoto,Plasma Chem. Plasma Process. 9, 13 (1989).

    Google Scholar 

  2. M. Suzuki, S. Miyazaki, and S. Takahashi,Nippon Kagaku Zasshi 75, 1265 (1954).

    Google Scholar 

  3. E. N. Eremin, A. N. Mal'tsev, and V. L. Syaduk,Russ. J. Phys. Chem. 45, 635 (1971).

    Google Scholar 

  4. G. Y. Botchway and M. Venugopalan,Z. Phys. Chem. Neue Folge 120, 103 (1980).

    Google Scholar 

  5. K. S. Yin and M. Venugopalan,Plasma Chem. Plasma Process.,3, 343 (1983).

    Google Scholar 

  6. M. Touvelle, J. L. Muñoz Licea, and M. Venugopalan,Plasma Chem. Plasma Process. 7, 101 (1987).

    Google Scholar 

  7. O. Nomura, H. Oyama, and Y. Sakamoto,Sci. Paper IPCR 75, 124 (1981).

    Google Scholar 

  8. R. J. Donovan and D. Husain,Chem. Rev. 70, 489 (1970).

    Google Scholar 

  9. D. Smith, N. G. Adams, and T. M. Miller,J. Chem. Phys. 69, 308 (1978).

    Google Scholar 

  10. B. D. Green and G. E. Caledonia,J. Chem. Phys. 77, 3821 (1982).

    Google Scholar 

  11. M. Capitelli and E. Molinari,Plasma Chemistry II, S. Vepřek and M. Venugopalan (eds.), Springer-Verlag, Berlin (1980), p. 71.

    Google Scholar 

  12. R. M. Baddour and R. H. Dundas inThe Application of Plasmas to Chemical Processing, R. M. Baddour and R. S. Timmins (eds.), MIT Press, Cambridge, Mass. (1967), p. 87.

    Google Scholar 

  13. A. V. Phelps, inChemical Reactions in Electrical Discharges, B. D. Blaustein (ed.), American Chemical Society, Washington, D.C. (1969), p. 18.

    Google Scholar 

  14. J. L. Vossen,J. Electrochem. Soc. 126, 319 (1978).

    Google Scholar 

  15. C. M. Ferreira and J. Loureiro,J. Phys. D. Appl. Phys. 17, 1175 (1984).

    Google Scholar 

  16. F. P. Treadwell and W. T. Hall,Analytical Chemistry II. Quantitative, John Wiley and Sons, New York (1961), p. 493.

    Google Scholar 

  17. H. Uyama, T. Uchikura, H. Niijima, and O. Matsumoto,Chem. Lett. 555 (1987).

  18. R. M. Gibbons and R. M. Barrer,Trans. Faraday Soc. 59, 1074 (1958).

    Google Scholar 

  19. M. Venugopalan and S. Vepřek, inPlasma Chemistry IV, S. Vepřek and M. Venugopalan (eds.), Springer-Verlag, Berlin (1983), p. 8.

    Google Scholar 

  20. R. d'Agostino, F. Cramarossa, S. De Benedictis, and G. Ferraro,Plasma Chem. Plasma Process. 1, 19 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uyama, H., Matsumoto, O. Synthesis of ammonia in high-frequency discharges. II. Synthesis of ammonia in a microwave discharge under various conditions. Plasma Chem Plasma Process 9, 421–432 (1989). https://doi.org/10.1007/BF01083676

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01083676

Key Words

Navigation