Skip to main content
Log in

Identification of the ferrioxamine B receptor, FoxB, inEscherichia coli K12

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The photoreactivep-azidobenzoyl analog of ferrioxamine B was used to show that ferrioxamine-B-mediated iron transport is separate and distinct from coprogen-mediated iron transport inEscherichia coli. Photolysis of this analog inhibited uptake of [59Fe]ferrioxamine B but not [59Fe]coprogen or [59Fe]ferrichrome. Conversely, photolysis of thep-azidobenzoyl analog of coprogen B inhibited uptake of [59Fe]coprogen but not [59Fe]ferrioxamine B or [59Fe]ferrichrome. Photolabeling of outer membranes withp-azidobenzoyl-[59Fe]ferrioxamine B resulted in the labeling of two iron-regulated peptides with molecular masses of about 66 and 26 kDa. Expression of these peptides was increased when ferrioxamine B was the sole iron source. Both peptides were present in outer membrane preparations of thefhuF mutant H1717, but the 66 kDa peptide was not inducible. These results are evidence for an outer membrane receptor inE. coli unique for linear ferrioxamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, CT, Kime-Hunt EM, Carrano, CJ, Huschka, H-G, Winkelmann G. 1986. A photoaffinity label for the siderophore-mediated iron transport system inNeurospora crassa.Biochim Biophys Acta 883, 299–305.

    Google Scholar 

  • Bayley H, Knowles JR. 1977 Photoaffinity labeling.Methods Enzymol 46, 69–114.

    PubMed  Google Scholar 

  • Berner I, Winkelmann G. 1990 Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) inErwinia herbicola (Enterobacter agglomerans).Biol Metals 2, 197–202.

    Google Scholar 

  • Braun V, Hantke K. 1991 Genetics of bacterial iron transport. In: Winkelmann G, ed.CRC Handbook of Microbial Iron Chelates. Boca Raton: CRC Press; 107–138.

    Google Scholar 

  • Carney DH, Glenn KC, Cunningham DD, et al. 1979 Photoaffinity labeling of a single receptor for a thrombin on mouse embryo cells.J Biol Chem 254, 6244–6247.

    PubMed  Google Scholar 

  • Carrano CJ, Bailey CT, Bonadies JA. 1986 Transport properties ofN-acyl derivatives of the coprogen and ferrichrysin classes of siderophores inNeurospora crassa.Arch Microbiol 146, 41–45.

    Google Scholar 

  • Curtis NAC, Eisenstadt RL, East SJ, et al. 1988 Ironregulated outer membrane proteins ofEscherichia coli K12 and mechanism of action of catechol-substituted cephalosporins.Antimicrob Agents Chemother 32, 1879–1886.

    PubMed  Google Scholar 

  • Diekmann H. 1970 Vorkommen und Strukturen von Coprogen B und Dimerumsaure.Arch Mikrobiol 73, 65–76.

    PubMed  Google Scholar 

  • Emery T, Neilands JB. 1960 Contribution to the structure of the ferrichrome compounds: characterization of the acyl moieties of the hydroxamate functions.J Am Chem Soc 82, 3658–3662.

    Google Scholar 

  • Fecker L, Braun V. 1983 Cloning and expression of thefhu genes involved in iron (III)-hydroxamate uptake byEscherichia coli.J Bacteriol 156, 1301–1314.

    PubMed  Google Scholar 

  • Grewal KK, Warner PJ, Williams PH. 1982 An inducible outer membrane protein involved in aerobactin-mediated iron transport by ColV strains ofEscherichia coli.FEBS Lett 140, 27–30.

    PubMed  Google Scholar 

  • Guellaen G, Goodhardt M, Hanoune J. 1984 Preparative SDS gel electrophoresis. In: Venter JC, Harrison LC, eds.Receptor Purification Procedures. New York: Alan R. Liss; 109–124.

    Google Scholar 

  • Hantke K. 1981 Regulation of ferric iron transport inEscherichia coli K12: isolation of a constitutive mutant.Mol Gen Genet 182, 288–292.

    PubMed  Google Scholar 

  • Hantke K. 1983 Identification of an iron uptake system specific for coprogen and rhodotorulic acid inEscherichia coli K12.Mol Gen Genet 191, 301–306.

    PubMed  Google Scholar 

  • Hantke K. 1987 Selection procedure for deregulated iron transport mutants (fur) inEscherichia coli K12:fur not only effects iron metabolism.Mol Gen Genet 210: 135–139.

    PubMed  Google Scholar 

  • Koshland D, Botstein D. 1980 Secretion of β-lactamase requires the carboxy end of the protein.Cell 20, 749–760.

    PubMed  Google Scholar 

  • Kadner RJ, Heller K, Coulton JW, Braun V. 1980 Genetic control of hydroxamate-mediated iron uptake inEscherichia coli.J Bacteriol 143, 256–264.

    PubMed  Google Scholar 

  • Linsley PS, Das M, Fox CF. 1981 Affinity labeling of hormone receptors and other ligand binding proteins. In: Jabobs S, Cuatrecasas P, eds.Membrane Receptors: Methods for Purification and Characterization. New York: Chapman & Hall; 89–113.

    Google Scholar 

  • Maniatis T, Fitsch EF, Sambrook J. 1982Molecular Cloning—A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 68–72.

    Google Scholar 

  • McIntosh MA, Earhart CF 1977 Coordinate regulation by iron of the synthesis of phenolate compounds and three outer membrane proteins inEscherichia coli.J Bacteriol. 131, 331–339.

    PubMed  Google Scholar 

  • Mizushima S, Yamada H. 1975 Isolation and characterization of two outer membrane preparations fromEscherichia coli.Biochim Biophys Acta 375, 44–53.

    PubMed  Google Scholar 

  • Nelson M, Cooper CR, Crowley DE, Reid CPP, Szaniszlo PJ. 1988 AnEscherichia coli bioassay of individual siderophores in soil.J Plant Nutr 11, 915–924.

    Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhard W. 1988 Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G250 and R250.Electrophoresis 9, 255–262.

    PubMed  Google Scholar 

  • Nikaido H, Rosenberg EY. 1990 Cir and Fiu proteins in the outer membrane ofEscherichia coli catalyze transport of monomeric catechols: study with β-lactam antibiotics containing catechol and analogous groups.J Bacteriol 172, 1361–1367.

    PubMed  Google Scholar 

  • Pierce JR, Pickett CL, Earhart CF. 1983 Twofep genes are required for ferrienterochelin uptake inEscherichia coli K12.J Bacteriol 155, 330–336.

    PubMed  Google Scholar 

  • Powell PE, Szaniszlo PJ, Reid CPP. 1983 Confirmation of occurrence of hydroxamate siderophores in soil by a novelEscherichia coli bioassay.Appl Environ Microbiol 46, 1080–1083.

    Google Scholar 

  • Prody CA, Neilands JB. 1984 Genetic and biochemical characterization of theEscherichia coli K12fhuB mutation.J Bacteriol 157, 874–880.

    PubMed  Google Scholar 

  • Rabsch R, Reissbrodt W. 1988 Further differentiation of Enterobacteriaceae by means of siderophore pattern analysis.Zentralbl Bakteriol Hyg A 268, 306–317.

    Google Scholar 

  • Rogers JH. 1973 Iron binding catecholates and virulence inEscherichia coli.Infect Immun 7, 445–456.

    Google Scholar 

  • Ruoho AE, Rashidbaigi A, Roeder PE. 1984 Approaches to the identification of receptors utilizing photoaffinity labeling. In: Venter JC, Harrison LC, eds.Membranes, Detergents, and Receptor Solubilization. New York: Alan R. Liss; 119–160.

    Google Scholar 

  • Schmitt MP, Payne SM. 1988 Genetics and regulation of enterobactin genes inShigella flexneri.J. Bacteriol 170, 5579–5587.

    PubMed  Google Scholar 

  • Schnaitman CA, 1973 Outer membrane proteins ofEscherichia coli. II. Heterogeneity of major outer membrane proteins.Arch Biochem Biophys 157, 553–555.

    PubMed  Google Scholar 

  • Shanahan MF, Wadzinski BE, Lowndes JM, Ruoho A. 1985 Photoaffinity labelling of the human erythrocyte monosaccharide transporter with an aryl azide derivative ofd-glucose.J Biol Chem 260, 10897–10900.

    PubMed  Google Scholar 

  • Sivaprasadarao A, Findlay JBC. 1987 Assay of receptors. In: Findlay JBC, Evans WH, eds.Biological Membranes: A Practical Approach. Oxford: IRL Press: 287–289.

    Google Scholar 

  • Wagegg W, Braun V. 1981 Ferric citrate transport inEscherichia coli requires outer membrane receptor protein FecA.J Bacteriol 145, 156–163.

    PubMed  Google Scholar 

  • Wayne R, Frick K, Neilands JB. 1976 Siderophore protection against colicins M, B, V and Ia inEscherichia coli.J Bacteriol 126, 7–12.

    PubMed  Google Scholar 

  • Wiebe C, Winkelmann G. 1975 Kinetic studies on the specificity of chelate-iron uptake inAspergillus.J Bacteriol 123, 837–842.

    PubMed  Google Scholar 

  • Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G. 1983 Coordination chemistry of microbial transport compounds. 24. Characterization of coprogen and ferricrocin, two ferric hydroxamate siderophores.J Am Chem Soc 105, 810–815.

    Google Scholar 

  • Wouters W, Van Dun J, Leysen JE, Laduron PM. 1985 Photoaffinity probes for serotonin and histamine receptors: Synthesis and characterization of two azide analogues of ketanserin.J Biol Chem 260, 8423–8429.

    PubMed  Google Scholar 

  • Yip CC, Yeung CWT, Moule ML. 1980 Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations.Biochemistry 19, 70–76.

    PubMed  Google Scholar 

  • Yip CC, Laing LP, Flynn TG. 1985 Photoaffinity labeling of atrial natriuretic factor receptors of rat kidney cortex plasma membrane.J Biol Chem 260, 8229–8232.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., Carrano, C.J. & Szaniszlo, P.J. Identification of the ferrioxamine B receptor, FoxB, inEscherichia coli K12. Biometals 5, 37–46 (1992). https://doi.org/10.1007/BF01079696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01079696

Keywords

Navigation