Skip to main content
Log in

Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in rabbits after intravenous administration

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The pharmacokinetics of methotrexate (MTX) and 7-hydroxy-methotrexate (7-OH-MTX), a major metabolite, were investigated in rabbits after intravenous bolus injection and infusion using a specific HPLC assay. The arterial sampling (from the carotid artery) was used in all the studies since peculiar and significant arterial-venous differences in the plasma concentration of MTX and 7-OH-MTX were found following bolus administration of the drug. The disposition kinetics of MTX appeared polyexponential with a small terminal phase having a half-life of 10.2–27.5 hr. Extensive formation of 7-OH-MTX occurred at the two dose levels (15 and 50 mg/kg). Nonlinear disposition of MTX was reflected in several aspects of data analysis. A disproportionate increase in the AUC with dose was observed. An increase in dose not only reduced the mean total body clearance (7.49 vs. 4.26 ml/min/kg) and renal clearance (4.89 vs. 2.76 ml/min/kg), but also prolonged the mean residence time (26.2 vs. 43.3 min). The steady-state volume of distribution (Vss) of MTX was estimated to range from 0.16 to 0.25 L/kg. More than 90% of the dose was excreted as MTX and 7-OH-MTX within 8 hr after dosing. Renal clearances decreased with the increasing plasma levels, suggesting active tubular secretion as one of the excretion mechanisms. A similar pattern for renal clearance of 7-OH-MTX was obtained. Infusion studies of 7-OH-MTX revealed that this metabolite had a longer residence time and a larger Vss as compared with MTX, which were in accordance with its physicochemical properties. Essentially complete doses of 7-OH-MTX could be recovered in the rabbit urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Farber, L. K. Diamond, R. D. Mercer, R. F. Sylvester, and J. A. Wolff. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroylglutamic acid (aminopterin).N. Engl. J. Med. 238:787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  2. B. A. Chabner, C. E. Myers, C. N. Coleman, and D. G. Johns. The clinical pharmacology of antineoplastic agents.N. Engl. J. Med. 292:1107–1113 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. W. A. Bleyer. The clinical pharmacology of methotrexate.Cancer 41:36–51 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. M. Levitt, M. B. Mosher, R. C. Deconti, L. R. Farber, R. T. Skeel, J. C. Marsh, M. S. Mitchell, R. J. Papac, E. D. Thomas, and J. R. Bertino. Improved therapeutic index of methotrexate with “leucovorin rescue.”Cancer Res. 33:1729–1734 (1973).

    CAS  PubMed  Google Scholar 

  5. D. D. Shen and D. L. Azarnoff. Clinical pharamacokinetics of methotrexate.Clin. Pharmacokin. 3: 1–13 (1978).

    Article  CAS  Google Scholar 

  6. R. G. Buice, W. E. Evans, C. A. Nicholas, P. Sidhu, A. B. Straughn, M. C. Meyer, and W. R. Crom. Radioassay, and radioimmunoassay of serum methotrexate, as compared with liquid chromatography.Clin. Chem. 26:1902–1904 (1980).

    CAS  PubMed  Google Scholar 

  7. S. K. Howell, Y. Wang, R. Hosoya, and W. W. Sutow. Plasma methotrexate as determined by liquid chromatography, enzyme-inhibition assay, and radioimmunoassay after high-dose infusion.Clin. Chem. 26:734–737 (1980).

    CAS  PubMed  Google Scholar 

  8. J. L. Cohen, G. H. Hisayasu, A. R. Barrientos, M. S. B. Nayar, and K. K. Chan. Reversed-phase high-performance liquid Chromatographic analysis of methotrexate and 7-hydroxymethotrexate in serum.J. Chromatogr. 181:478–483 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. S. A. Jacobs, R. G. Stoller, B. A. Chabner, and D. G. Johns. 7-Hydroxymethotrexate in human subjects and rhesus monkeys receiving high dose methotrexate.J. Clin. Invest. 57:534–538 (1976).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. R. E. Kates and T. N. Tozer. Separation of methotrexate and nonmethotrexate components in rat plasma.J. Pharm. Sci. 62:2056–2057 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. H. M. Redetzki, J. E. Redetzki, and A. L. Elias. Resistance of the rabbit to methotrexate: isolation of a drug metabolite with decreased cytotoxicity.Biochem. Pharmacol. 15:425–433 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. D. M. Valerino, D. G. Johns, D. S. Zahavko, and V. T. Oliverio. Studies of metabolism of methotrexate by intestinal flora.I. Biochem. Pharmacol. 21:821–831 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. S. A. Jacobs, R. G. Stoller, B. A. Chabner, and D. G. Johns. Dose-dependent metabolism of methotrexate in man and rhesus monkeys.Cancer Treat. Rep. 61:651–656 (1977).

    CAS  PubMed  Google Scholar 

  14. J. L. Wisnicki, W. P. Tong, and D. B. Ludlum. Analysis of methotrexate and 7-hydroxy-methotrexate by high pressure liquid chromatography.Cancer Treat. Rep. 62:529–532 (1978).

    CAS  PubMed  Google Scholar 

  15. K. K. Chan, M. S. B. Nayar, and J. L. Cohen. Metabolism of methotrexate in man after high and conventional doses.Res. Commun. Chem. Pathol. Pharmacol. 28:551–561 (1980).

    CAS  PubMed  Google Scholar 

  16. W. E. Evans, C. F. Stewart, P. R. Hutson, D. A. Cairnes, W. P. Bowman, G. C. Yee, and W. R. Crom. Disposition of intermediate-dose methotrexate in children with acute lymphocytic leukemia.Drug Intell. Clin. Pharm. 16:839–842 (1982).

    CAS  PubMed  Google Scholar 

  17. M. L. Chen, W. P. McGuire, T. E. Lad, and W. L. Chiou. Pharmacokinetics of methotrexate and 7-hydroxymethotrexate in patients using a specific HPLC assay.Int. J. Clin. Pharmacol. Ther. Toxicol., in press.

  18. J. Lankelma and E. V. D. Klein. The role of 7-hydroxymethotrexate during methotrexate anti-cancer therapy.Cancer Lett. 9:133–142 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. M. L. Chen and W. L. Chiou. Sensitive and rapid high-performance liquid Chromatographic method for the simultaneous determination of methotrexate and its metabolites in plasma, saliva, and urine.J. Chromatogr. 226:125–134 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Arterial-venous plasma concentration differences of six drugs in the dog and rabbit after intravenous administration.Res. Commun. Chem. Pathol. Pharmacol. 32:27–39 (1981).

    CAS  PubMed  Google Scholar 

  21. W. L. Chiou and G. Lam. The significance of arterial-venous plasma concentration difference in clearance studies.Int. J. Clin. Pharmacol. Ther. Toxicol. 20:197–203 (1982).

    CAS  PubMed  Google Scholar 

  22. S. Bojholm, O. B. Paulson, and H. Falchs. Arterial and venous concentrations of phenobar-bital, phenytoin, clonazepam, and diazepam after rapid intravenous injections.Clin. Pharmacol. Ther. 32:478–483 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. J. D. Best and J. B. Halter. Release and clearance rates of epinephrine in man: importance of arterial measurements.J. Clin. Endocrinol. Metab. 55:263–268 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. G. Lam and W. L. Chiou. Determination of renal clearances using arterial and venous plasma: procainamide in rabbits.J. Pharm. Sci. 70:1373–1375 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. G. Lam and W. L. Chiou. Determination of the steady-state volume of distribution using arterial and venous plasma data from constant infusion studies with procainamide.J. Pharm. Pharmacol. 34:132–134 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Effect of arterial-venous plasma concentration difference on the determination of mean residence time of drugs in the body.Res. Commun. Chem. Pathol. Pharmacol. 35:17–26 (1982).

    CAS  PubMed  Google Scholar 

  27. W. L. Chiou. The physiological significance of the apparent volume of distribution Vd,area or Vd,β, in pharmacokinetic studies.Res. Commun. Chem. Pathol. Pharmacol. 33:499–508 (1981).

    CAS  PubMed  Google Scholar 

  28. W. L. Chiou. New physiologically-based methods for the calculation of the apparent steady-state volume of distribution in pharmacokinetic studies.Int. J. Clin. Pharmacol. Ther. Toxicol. 20:255–258 (1982).

    CAS  PubMed  Google Scholar 

  29. G. Lam and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: propranolol in rabbits and dogs.Res. Commun. Chem. Pathol. Pharmacol. 33:33–48 (1981).

    CAS  PubMed  Google Scholar 

  30. M. L. Chen, G. Lam, M. G. Lee, and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: griseofulvin.J. Pharm. Sci. 71:1386–1389 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. E. Watson, J. L. Cohen, and K. K. Chan. High-pressure liquid Chromatographic determination of methotrexate and its major metabolite, 7-hydroxymethotrexate, in human plasma.Cancer Treat. Rep. 62:381–387 (1978).

    CAS  PubMed  Google Scholar 

  32. M. G. Lee, M. L. Chen, and W. L. Chiou. Pharmacokinetics of drugs in blood. II. Unusual distribution and storage effect of furosemide.Res. Commun. Chem. Pathol. Pharmacol. 34:17–28 (1981).

    CAS  PubMed  Google Scholar 

  33. W. L. Chiou. Critical evaluation of potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve.J. Pharmacokin. Biopharm. 6:539–546 (1978).

    Article  CAS  Google Scholar 

  34. W. L. Chiou. New calculation method for mean apparent drug volume of distribution and application to rational dosage regimens.J. Pharm. Sci. 68:1067–1069 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. W. L. Chiou. New calculation method of mean total body clearance of drugs and its application to dosage regimens.J. Pharm. Sci. 69:90–91 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. S. M. Huang and W. L. Chiou. Pharmacokinetics and tissue distribution of chlorpheniramine in rabbits after intravenous administration.J. Pharmacokin. Biopharm. 9:711–723 (1981).

    Article  CAS  Google Scholar 

  37. M. L. Chen and W. L. Chiou. Tissue metabolism and distribution of methotrexate in rabbits.Drug Metab. Disp. 10:706–707 (1982).

    CAS  Google Scholar 

  38. M. L. Chen and W. L. Chiou. Clearance studies of methotrexate and 7-hydroxymethotrexate in rabbits after multiple-dose infusion.J. Pharmacokin. Biopharm. 11:515–527 (1983).

    Article  CAS  Google Scholar 

  39. A. J. Patterson, W. A. Ritschel, D. Zelliner, and S. H. Kim. Methotrexate serum and saliva concentrations in patients.Int. J. Clin. Pharmacol. Ther. Toxicol. 19:381–385 (1981).

    CAS  PubMed  Google Scholar 

  40. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. Capacity-limited elimination of cefmetazole in rat.Int. J. Pharm. 10:291–300 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was in part supported by a grant from the National Cancer Institute, PHS CA 29754.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ML., Chiou, W.L. Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in rabbits after intravenous administration. Journal of Pharmacokinetics and Biopharmaceutics 11, 499–513 (1983). https://doi.org/10.1007/BF01062208

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062208

Key words

Navigation