Skip to main content
Log in

Basic mechanisms determining the characteristics of calcium signals in nerve cells

  • Published:
Neurophysiology Aims and scope

Abstract

The paper summarizes recent data about the mechanisms that determine the kinetics and amplitude of transient elevations in the intracellular level of free calcium (“calcium signals”) in excitable cells. The relative role of various types of voltage-operated calcium channels, fast cytosolic buffering, active accumulation in intracellular stores, and extrusion of ions from the cell are discussed. New technical approaches enabling resolution of these questions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk, S. A. Fedulova, and N. S. Veselovskii, “Changes in ionic mechanisms of electrical excitability of the somatic membrane of rat dorsal root ganglion neurons during ontogenesis. Distribution of ionic channels of inward current,”Neirofiziologiya,18, 813–820 (1986).

    Google Scholar 

  2. E. Carbone and H. D. Lux, “A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones,”Nature,310, 501–503 (1984).

    PubMed  Google Scholar 

  3. S. A. Fedulova, P. G. Kostyuk, and N. S. Veselovskii (Veselovsky), “Two types of calcium channels in the somatic membrane of newborn rat dorsal root ganglion neurons,”J. Physiol.,359, 431–446 (1985).

    PubMed  Google Scholar 

  4. M. C. Nowycky, A. P. Fox, and R. W. Tsien, “Three types of neuronal calcium channels with different calcium agonist sensitivity,”Nature,316, 440–443 (1985).

    PubMed  Google Scholar 

  5. S. A. Fedulova, P. G. Kostyuk, and N. S. Veselovskii (Veselovsky), “Ionic mechanisms of electrical excitability in rat sensory neurones during postnatal ontogenesis,”Neuroscience,41, 303–309 (1991).

    PubMed  Google Scholar 

  6. D. P. McCobb and K. G. Beam, “Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high-voltage-activated calcium channels,”Neuron,7, 119–127 (1991).

    PubMed  Google Scholar 

  7. P. Kostyuk, N. Pronchuk, A. Savchenko, and A. Verkhratskii (Verkhratsky), “Calcium currents in aged rat sensory neurones,”J. Physiol.,462, 237–245 (1993).

    Google Scholar 

  8. S. Kirishchuk, N. Pronchuk, and A. Verkhratskii (Verkhratsky), “Measurements of intracellular calcium in sensory neurones of adult and old rats,”Neuroscience,50, 947–951 (1992).

    PubMed  Google Scholar 

  9. L. D. Partridge, T. H. Muller, and D. Swandulla, “Direct measurement of cytoplasmic Ca buffering in snail suggests co-localization of Ca and CAN channels,” in:22nd Annual Meeting Soc. Neurosci. (Anaheim, CA, Oct. 25–30, 1992)18, Part 1, p. 797.

  10. P. Belan, P. Kostyuk, V. Snitsarev, and A. Tepikin, “Calcium clamp in isolated neurones of the snailHelix pomatia,”J. Physiol.,462, 47–58 (1993).

    PubMed  Google Scholar 

  11. R. S. Zucker, “The calcium concentration clamp: spikes and reversible pulses using the photolabile chelator DM-nitrophen,”Cell Calcium,14, 87–100 (1993).

    PubMed  Google Scholar 

  12. P. G. Kostyuk and A. V. Tepikin, “Calcium signals in nerve cells,”News Physiol. Sci.,6, 6–10 (1991).

    Google Scholar 

  13. J. R. Brorson, D. Bleakman, S. J. Gibbons, and R. J. Miller, “The properties of intracellular calcium stores in cultured rat cerebellar neurons,”J. Neurosci.,11, 4024–4043 (1991).

    PubMed  Google Scholar 

  14. Yu. Usachev, A. Shmigol, N. Pronchuk, et al., “Caffeine-induced calcium release from internal stores in cultured rat sensory neurones,”Neuroscience,57, P. 845–859 (1993).

    PubMed  Google Scholar 

  15. D. D. Friel and R. W. Tsien, “A caffeine- and ryanodine-sensitive Ca stores in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+] in ,”J. Physiol.,450, 217–246 (1992).

    Google Scholar 

  16. N. V. Marrion and P. R. Adams, “Release of intracellular calcium and modulation of membrane currents by caffeine in bull-frog sympathetic neurons,”J. Physiol.,445, 515–535 (1992).

    PubMed  Google Scholar 

  17. A. V. Tepikin, P. G. Kostyuk, V. A. Snitsarev, and P. V. Belan, “Extrusion of calcium from a single isolated neuron of the snailHelix pomatia,”J. Membrane Biol.,123, 43–47 (1991).

    Google Scholar 

  18. A. V. Tepikin, S. G. Voronina, D. V. Gallacher, and O. H. Petersen, “Pulsatile Ca extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca spiking,”J. Biol. Chem.,267, 14073–14076 (1992).

    PubMed  Google Scholar 

  19. P. G. Kostyuk, S. L. Mironov, A. V. Tepikin, and P. V. Belan, “Cytoplasmic free Ca in isolated snail neurons as revealed by fluorescent probe fura-2: Mechanisms of Ca recovery after Ca load and Ca release from intracellular stores,”J. Membrane Biol.,100, 11–18 (1989).

    Google Scholar 

  20. C. D. Benham, M. L. Evans, and C. J. McBain, “Ca efflux mechanisms following depolarization evoked calcium transients in cultured rat sensory neurones,”J. Physiol.,455, 567–583 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 5–8, January–February, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, P.G. Basic mechanisms determining the characteristics of calcium signals in nerve cells. Neurophysiology 26, 3–6 (1994). https://doi.org/10.1007/BF01059985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059985

Keywords

Navigation