Skip to main content
Log in

A multineuron interaction model for neural networks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A multineuron interaction model (RS model) with an energy function given by the product of the squared distances in phase space between the state of the net and the stored patterns is studied in detail within a mean-field approach. Two limits are considered: when the patterns and antipatterns are stored (as in the Hopfield model), PAS case, and when only the patterns are taken into account, OPS case. TheT=0 solutions for the proper memories are exactly obtained for all finite values ofα, as a consequence of the energy function: whenever one of the overlaps is exactly one the corresponding equations decouple and no configuration average is required. Special interest is focused on the OPS situation, which presents a peculiar phase space topology. On the other hand, the PAS configuration recovers the Hopfield model in the appropriate limit, while keeping associative memory abilities far beyond the critical values of other models when the full Hamiltonian is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. McCulloch and W. A. Pitts,Bull. Math. Biophys. 5:115 (1943).

    Google Scholar 

  2. J. J. Hopfield,Proc. Natl. Acad. Sci. USA 79:2554 (1982).

    Google Scholar 

  3. D. J. Amit,Modeling Brain Function (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  4. D. J. Amit, H. Gutfreund, and H. Sompolinsky,Phys. Rev. A 32:1007 (1985);Ann. Phys. (N.Y.)173:30 (1987);Phys. Rev. A 35:2293 (1987).

    Google Scholar 

  5. E. Gardner,J. Phys. A: Math. Gen. 21:257 (1988).

    Google Scholar 

  6. D. O. Hebb,The Organisation of Behavior (Wiley, New York, 1949).

    Google Scholar 

  7. T. J. P. Penna and P. M. C. Oliveira,Europhys. Lett. 11(3):191 (1990).

    Google Scholar 

  8. L. Personnaz, I. Guyon and G. Dreyfus,J. Phys. Lett. (Paris)46:L359 (1985).

    Google Scholar 

  9. I. Kanter and H. Sompolinsky,Phys. Rev. A 35:380 (1987).

    Google Scholar 

  10. E. Gardner,J. Phys. A: Math. Gen. 20:3453 (1987).

    Google Scholar 

  11. G. A. Kohring,J. Phys. (Paris)51:145 (1990).

    Google Scholar 

  12. R. M. C. de Almeida and J. R. Iglesias,Phys. Lett. A 146:239 (1990).

    Google Scholar 

  13. J. J. Arenzon, R. M. C. de Almeida, and J. R. Iglesias, in:Nonlinear Phenomena in Fluids, Solids and other Complex Systems, P. Cordero and B. Nachtergaele, eds. (North-Holland, Amsterdam, 1991), p. 21.

    Google Scholar 

  14. D. Horn and M. Usher,J. Phys. (Paris)49:389 (1988).

    Google Scholar 

  15. L. F. Abbott and Y. Arian,Phys. Rev. A 36:5091 (1987).

    Google Scholar 

  16. J. J. Arenzon, R. M. C. de Almeida, J. R. Iglesias, T. J. P. Penna, and P. M. C. de Oliveira,J. Phys. I (Paris)1:55 (1992).

    Google Scholar 

  17. T. J. P. Penna, P. M. C. de Oliveira, J. J. Arenzon, R. M. C. de Almeida, and J. R. Iglesias,Int. J. Mod. Phys. C 2:711 (1991).

    Google Scholar 

  18. P. Peretto and J. J. Niez,Biol. Cybernet. 54:53 (1986).

    Google Scholar 

  19. V. Deshpande and C. Dasgupta,J. Stat. Phys. 64:755 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arenzon, J.J., de Almeida, R.M.C. & Iglesias, J.R. A multineuron interaction model for neural networks. J Stat Phys 69, 385–409 (1992). https://doi.org/10.1007/BF01053798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053798

Key words

Navigation