Skip to main content
Log in

Identification of a GDP-Fuc:Galβ1–3GalNAc-R (Fuc to Gal)α1–2 fucosyltransferase and a GDP-Fuc:Galβ1–4GlcNAc (Fuc to GlcNAc)α1–3 fucosyltransferase in connective tissue of the snailLymnaea stagnalis

  • Glycoconjugate Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in α1–2 linkage to terminal Gal of type 3 (Galβ1–3GalNAc) acceptors, and in α1–3 linkage to GlcNAc of type 2 (Galβ1–4GlcNAc) acceptors. The α1–2 fucosyltransferase was active with Galβ1–3GalNAcβ1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml−1) and Galβ1–3GalNAc (K m=20 mM,V max=2.1 mU ml−1), whereas the α1–3 fucosyltransferase was active with Galβ1–4GlcNAc (K m=23 mM,V max=1.1 mU ml−1). The products formed from Galβ1–3GalNAcβ1-OCH2CH=CH2 and Galβ1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fucα1–2Galβ1–3GalNAcβ1-OCH2CH=CH2 and Galβ1–4(Fucα1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α2Fuc-T:

α1–2 fucosyltransferase

α3Fuc-T:

α1–3 fucosyltransferase

MeO-3Man:

3-O-methyl-D-mannose

MeO-3Gal:

3-O-methyl-D-galactose

References

  1. Van Kuik JA, Sijbesma RP, Kamerling JP, Vliegenthart JFG, Wood EJ (1986)Eur J Biochem 160: 621–25.

    Google Scholar 

  2. Van Kuik JA, Sijbesma RP, Kamerling JP, Vliegenthart JFG, Wood EJ (1987)Eur J Biochem 169: 399–411.

    Google Scholar 

  3. Mulder H, Schachter H, De Jong-Brink M, Van der Ven JGM, Kamerling JP, Vliegenthart JFG (1991)Eur J Biochem 201: 459–65.

    Google Scholar 

  4. Mulder H, Spronk BA, Schachter H, Neeleman AP, Van den Eijnden DH, De Jong-Brink M, Kamerling JP, Vliegenthart JFG (1995)Eur J Biochem 227: 175–85.

    Google Scholar 

  5. Mulder H, Dideberg F, Schachter H, Spronk BA, De Jong-Brink M, Kamerling JP, Vliegenthart JFGEur J Biochem 232: 272–83.

  6. Beyer TA, Sadler JE, Hill RL (1980)J Biol Chem 255: 5364–72.

    Google Scholar 

  7. Le Pendu J, Cartron JP, Lemieux RU, Oriol R (1985)Am J Hum Genet 37: 749–60.

    Google Scholar 

  8. Ernst LK, Rajan VP, Larsen RD, Ruff MM, Lowe JB (1989)J Biol Chem 264: 3436–47.

    Google Scholar 

  9. Kyprianou P, Betteridge A, Donald ASR, Watkins WM (1990)Glycoconjugate J 7: 573–88.

    Google Scholar 

  10. Larsen RD, Ernst LK, Nair RP, Lowe JB (1990)Proc Natl Acad Sci USA 87: 6674–78.

    Google Scholar 

  11. Sarnesto A, Kohlin T, Thurin J, Blaszczyk-Thurin M (1990)J Biol Chem 265: 15067–75.

    Google Scholar 

  12. Sarnesto A, Kohlin T, Hindsgaul O, Thurin J, Blaszczyk-Thurin M (1992)J Biol Chem 267: 2737–44.

    Google Scholar 

  13. Rouquier S, Lowe JB, Kelly RJ, Fertitta AL, Lennon G, Giorgi D (1995)J Biol Chem 270: 4632–39.

    Google Scholar 

  14. Bradford M (1976)Anal Biochem 72: 248–54.

    Google Scholar 

  15. Ciucanu I, Kerek AF (1984)Carbohydr Res 131: 209–17.

    Google Scholar 

  16. York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1985)Methods Enzymol 118: 3–40.

    Google Scholar 

  17. Jansson P-E, Kenne L, Liedgren H, Lindberg B, Lönngren J (1976)Chem Commun Stockholm University No. 8.

  18. Vliegenthart JFG, Dorland L, Van Halbeek H (1993)Adv Carbohydr Chem Biochem 41: 209–374.

    Google Scholar 

  19. Dixon M, Webb EC (1964)The Enzymes. London: Longmans.

    Google Scholar 

  20. Lay L, Nicotra F, Panza L, Russo G, Adobati E (1994)Helv Chim Acta 77: 509–14.

    Google Scholar 

  21. Hounsell EF, Jones NJ, Gooi HC, Feizi T, Donald ASR, Feeney J (1988)Carbohydr Res 178: 67–78.

    Google Scholar 

  22. Hanna R, Brummell DA, Camirand A, Hensel A, Russell EF, Maclachlan G (1991)Arch Biochem Biophys 290: 7–13.

    Google Scholar 

  23. Maclachlan G, Levy B, Farkas V (1992)Arch Biochem Biophys 294: 200–5.

    Google Scholar 

  24. Prieels JP, Monnom D, Dolmass M, Beyer TA, Hill RL (1981)J Biol Chem 256: 10455–63.

    Google Scholar 

  25. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990)Gene Develop 4: 1288–1303.

    Google Scholar 

  26. Weston BW, Nair RP, Larsen RD, Lowe JB (1992)J Biol Chem 267: 4152–60.

    Google Scholar 

  27. Nishihara S, Narimatsu H, Iwasaki H, Yazawa S, Akamatsu S, Ando T, Seno T, Narimatsu I (1994)J Biol Chem 269: 29271–78.

    Google Scholar 

  28. De Vries T, Van den Eijnden DH (1992)Histochem J 24: 761–70.

    Google Scholar 

  29. Bergwerff AA, Van Kuik JA, Schiphorst WECM, Koeleman CAM, Van den Eijnden DH, Kamerling JP, Vliegenthart JFG (1993)FEBS Lett 334: 133–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, H., Schachter, H., Thomas, J.R. et al. Identification of a GDP-Fuc:Galβ1–3GalNAc-R (Fuc to Gal)α1–2 fucosyltransferase and a GDP-Fuc:Galβ1–4GlcNAc (Fuc to GlcNAc)α1–3 fucosyltransferase in connective tissue of the snailLymnaea stagnalis . Glycoconjugate J 13, 107–113 (1996). https://doi.org/10.1007/BF01049686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049686

Key words

Navigation