Skip to main content
Log in

Surface analysis of nickel-oxide films modified by a reactive element

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The surface morphology of oxide grown in the temperature range of 873–1173K on modified high-purity nickel has been observed and quantitatively analyzed by atomic-force microscopy. The modifications included one of two finishing techniques and either CeO2 sol-gel coatings or Ce-ion implantation. There is an essential difference in the surface morphology and grain size for oxides formed on Ce/CeO2-modified nickel in comparison to pure NiO. The oxide topography also depends on the substrate-surface-finishing technique and the method of applying the cerium. Both Auger electron spectroscopy and Rutherford backscattering spectrometry were used to evaluate the depth composition of the oxide. In the modified oxide formed on chemically polished substrates the Ce generally appeared to be located close to the outer surface, even after long oxidation times. In oxide grown on mechanically polished substrates Ce was detectable by these techniques only during the very early stages of oxidation. A general correlation exists between the parameters describing the oxide-surface morphology and the Ce-depth distribution, and the reduction of the NiO growth rate achieved by applying the reactive element. Detailed analysis of the oxide surface, internal microstructure, and chemistry gives new insights into the problem of the characterization of thin oxide films and the mechanism of oxide formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Papaiacovou, R. J. Hussey, D. F. Mitchell, and M. J. Graham,Corros. Sci. 40, 451 (1990).

    Google Scholar 

  2. R. A. Rapp,Metall. Trans. 15A, 765 (1984).

    Google Scholar 

  3. F. Czerwinski and W. W. Smeltzer,J. Electrochem. Soc. 40, 2606 (1993).

    Google Scholar 

  4. J. F. Ziegler, J. P. Biersack, and U. Littmark,The Stopping Power and Range of Ions in Solids (Pergamon Press, Oxford, 1985).

    Google Scholar 

  5. R. S. Walker and D. A. Thompson,Nucl. Instr. Meth. 135, 489 (1976).

    Google Scholar 

  6. CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press, Boca Raton, FL, 1981–1982).

  7. J. M. Bennett and L. Mattsson,Introduction to Surface Analysis and Scattering (Optical Society of America, Washington DC, 1989).

    Google Scholar 

  8. F. Czerwinski, G. I. Sproule, M. J. Graham, and W. W. Smeltzer,Corros. Sci., in press.

  9. N. Nath, N. Eyre, and D. Dearnaley,Nucl. Instr. Meth. Phys. Res. B10/11, 580 (1985

    Google Scholar 

  10. F. CCewinski and W. W. Smeltzer, inMicroscopy of Oxidation, S. B. Newcomb and M. J. Bennett, eds. (Institute of Materials, London, 1993), pp. 119, 128.

    Google Scholar 

  11. R. D. Leapman, C. E. Fiori, and C. R. Swyt,J. Microscopy 133, 239 (1984).

    Google Scholar 

  12. T. Malis, S. C. Cheng, and R. F. Egerton,J. Electron Micros. Techol. 8, 193 (1988)

    Google Scholar 

  13. J. M. Hampikian, O. F. Devereux, and D. I. Potter,Mater. Sci. Eng. A116, 119 (1989).

    Google Scholar 

  14. P. J. George, M. J. Bennett, H. E. Bishop, and G. Dearnaley,Mater. Sci. Eng. A 116, 111 (1989).

    Google Scholar 

  15. A. T. Chadwick and R. I. Taylor,Solid State Ionics 12, 343 (1984).

    Google Scholar 

  16. A. A. Moosa and S. J. Rothman,Oxid. Met. 24, 133 (1985).

    Google Scholar 

  17. D. P. Moon,Oxid. Met. 32, 47 (1989).

    Google Scholar 

  18. W. W. Smeltzer and D. J. Young,Prog. Solid State Chem. 10, 17 (1975).

    Google Scholar 

  19. D. P. Moon and M. J. Bennett,Mater. Sci. Forum 43, 269 (1989).

    Google Scholar 

  20. M. J. Bennett,J. Vac. Sci. Technol. B2, 800 (1984).

    Google Scholar 

  21. J. G. Smeggil, A. J. Shuskus, C. T. Burilla, and R. J. Cipolli,Surf. Coating Technol. 36, 27 (1988).

    Google Scholar 

  22. C. M. Cotell, G. J. Yurek, and M. J. Graham,Oxid. Met. 34, 173 (1990).

    Google Scholar 

  23. J. E. Antill, M. J. Bennett, R. F. Carney, G. Dearnaley, F. H. Fern, P. H. Goode, B. L. Myatt, J. F. Turner, and J. B. Warburton,Corros. Sci. 16, 729 (1976).

    Google Scholar 

  24. M. J. Bennett, G. Dearnaley, M. R. Houlton, W. M. Hawes, P. D. Goode, and M. A. Wilkins,Corros. Sci. 20, 73 (1980).

    Google Scholar 

  25. F. Czerwinski and W. W. Smeltzer,Oxid. Met. 40, 503 (1993).

    Google Scholar 

  26. A. Atkinson and R. I. Taylor,J. Phys. Chem. Solids 47, 315 (1986).

    Google Scholar 

  27. K. Przybylski and G. J. Yurek,Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  28. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London A295, 309 (1980).

    Google Scholar 

  29. J. Stringer,Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czerwinski, F., Szpunar, J.A., Macaulay-Newcombe, R.G. et al. Surface analysis of nickel-oxide films modified by a reactive element. Oxid Met 43, 25–57 (1995). https://doi.org/10.1007/BF01046746

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046746

Keywords

Navigation