Skip to main content
Log in

Quantum-statistical kinetic equations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, we derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors,P q rule, etc.) to nonequilibrium systems described by a density operatorρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. D. Cohen, inFundamental Problems in Statistical Mechanics, Vol. II, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1968), pp. 228–275.

    Google Scholar 

  2. M. H. Ernst, L. K. Haines, and J. R. Dorfman,Rev. Mod. Phys. 41:296 (1969).

    Google Scholar 

  3. J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, B. J. Berne, ed. (Plenum Press, New York, 1977), Part B, p. 65.

    Google Scholar 

  4. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  5. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A 6:776 (1972);Phys. Rev. A 12:292 (1975).

    Google Scholar 

  6. L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).

    Google Scholar 

  7. K. Kawasaki and I. Oppenheim,Phys. Rev. 139:A1763 (1965).

    Google Scholar 

  8. Y. Kan and J. R. Dorfman,Phys. Rev. A 16:2447 (1977).

    Google Scholar 

  9. M. H. Ernst and J. R. Dorfman,Physica 61:157 (1972).

    Google Scholar 

  10. J. W. Dufty and J. A. McLennan,Phys. Rev. A 9:1266 (1974).

    Google Scholar 

  11. J. R. Dorfman,Physica A 106:77 (1981).

    Google Scholar 

  12. D. Loss and H. Schoeller,Physica A 150:199 (1988).

    Google Scholar 

  13. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  14. C. D. Boley and J. Smith,Phys. Rev. A 12:661 (1975).

    Google Scholar 

  15. O. T. Vails, G. F. Mazenko, and H. Gould,Phys. Rev. B 19:263 (1978).

    Google Scholar 

  16. D. B. Boercker and J. W. Dufty,Ann. Phys. 119:43 (1979).

    Google Scholar 

  17. D. B. Boercker and J. W. Dufty,Phys. Rev. A 23:1952 (1981).

    Google Scholar 

  18. R. Der and R. Haberlandt,Physica A 79:597 (1975);A 86:25 (1977).

    Google Scholar 

  19. R. Der,Ann. Phys. 34:298 (1977).

    Google Scholar 

  20. J. W. Dufty,Phys. Rev. A 5:2247 (1972).

    Google Scholar 

  21. L. van Hove,Physica 21:517 (1955).

    Google Scholar 

  22. D. Loss,Physica A 139:505 (1986).

    Google Scholar 

  23. D. Loss and H. Schoeller,J. Stat. Phys. 54:765 (1989).

    Google Scholar 

  24. S. Choh and T. Uhlenbeck,The Kinetic Theory of Dense Gases (University of Michigan Report, 1958); M. Green,Physica 24:393 (1958); E. G. D. Cohen,Physica 27:163 (1961).

  25. P. Résibois,Physica 31:645 (1965).

    Google Scholar 

  26. P. Résibois,Phys. Lett. 9:139 (1964).

    Google Scholar 

  27. P. Résibois,Physica 32:1473 (1966).

    Google Scholar 

  28. P. Clavin,C. R. Acad. Sci. (Paris) A 274:1022, 1085 (1972).

    Google Scholar 

  29. N. N. Bogoliubov, inStudies in Statistical Mechanics, Vol. I, G. E. Uhlenbeck and J. de Boer, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  30. T. R. Kirkpatrick and J. R. Dorfman,J. Stat. Phys. 30:67 (1983);Phys. Rev. A 28:1022 (1983).

    Google Scholar 

  31. E. A. Uehling and G. E. Uhlenbeck,Phys. Rev. 43:552 (1933).

    Google Scholar 

  32. N. N. Bogoliubov,Lectures on Quantum Statistics, Vol. 1 (Gordon and Breach, New York, 1967).

    Google Scholar 

  33. P. Danielewicz,Ann. Phys. (N.Y.)152:239 (1984).

    Google Scholar 

  34. D. Kremp, M. Schlanges, and T. Bornath,J. Stat. Phys. 41:661 (1985).

    Google Scholar 

  35. L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics (Benjamin, New York, 1962).

    Google Scholar 

  36. P. Vasilopoulos and C. M. van Vliet,Physica A 121:617 (1983).

    Google Scholar 

  37. Y. L. Klimontovich,Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon Press, New York, 1982).

    Google Scholar 

  38. J. A. McLennan,J. Stat. Phys. 28:257, 521 (1982).

    Google Scholar 

  39. M. S. Green,Phys. Rev. 136:A905 (1964).

    Google Scholar 

  40. H. van Beijeren and M. H. Ernst,J. Stat. Phys. 21:125 (1979).

    Google Scholar 

  41. E. Fick and G. Sauermann,Quantenstatistik Dynamischer Prozesse, Vols. I and IIa (Harry Deutsch, Thun-Frankfurt a.M., 1983, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loss, D., Schoeller, H. Quantum-statistical kinetic equations. J Stat Phys 56, 175–201 (1989). https://doi.org/10.1007/BF01044240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044240

Key words

Navigation