Skip to main content
Log in

Phylogenetic relationships among the skunks: A molecular perspective

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Phylogenetic relationships among the three recognized genera of skunks (Mephitis, Spilogale, andConepatus) were examined using allozymes and nucleotide sequence data from portions of the cytochromeb gene and displacement loop of the mitochondrial genome. The data sets indicated thatMephitis andSpilogale shared a common ancestor after they diverged fromConepatus. Intrageneric relationships revealed that the level of genetic divergence between the two species ofSpilogale was equal to the level of divergence between the two species ofMephitis, with the two North American species ofConepatus possessing the least amount of genetic divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. P., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290 457–465.

    Google Scholar 

  • Biggins, M. D., Gibson, T. J., and Hing, G. F. (1983). Buffer gradient gels and35S label as an aid to rapid DNA sequence determination.Proc. Natl. Acad. Sci. 80 3963–3965.

    Google Scholar 

  • Coues, E. (1877). Fur-Bearing Animals: A Monograph of North American Mustelidae, in Which an Account of the Wolverine, the Martens and Sables, the Ermine, the Mink and Various Other Kinds of Weasels, Several Species of Skunks, the Badger, the Land and Sea Otters, and Numerous Exotic Allies of these Animals, Is Contributed to the History of North American Mammals, Dept. Inter., U.S. Geol. Surv., Washington, D.C.

    Google Scholar 

  • Dragoo, J. W., Choate, J. R., Yates, T. L., and O'Farrell, T. P. (1990). Evolutionary and taxonomic relationships among North American arid-land foxes.J. Mammal. 71 318–332.

    Google Scholar 

  • Farris, J. S. (1989). The retention index and the rescaled consistency index.Cladistics 5 417–419.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39 783–791.

    Google Scholar 

  • Fisher, R. A., Putt, W., and Hackel, E. (1976). An investigation of the products of 53 gene loci in three species of wild Canidae:Canis lupus, Canis latrans, andCanis familiaris.Biochem. Genet. 14 963–974.

    Google Scholar 

  • Gyllensten, U. (1989). Direct sequencing ofin vitro amplified DNA. InPCR Technology: Principles and Applications for DNA Amplification, H. A. Erlich, ed., pp. 45–60, Stockton Press, New York.

    Google Scholar 

  • Hall, E. R., and Kelson, K. R. (1952). Comments on the taxonomy and geographic distribution of some North American marsupials, insectivores and carnivores.Univ. Kans. Publ. Mus. Nat. Hist. 5 319–341.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland, Amsterdam.

    Google Scholar 

  • Higgins, D. G., and Sharp, P. M. (1989). Fast and sensitive multiple sequence alignments on a microcomputer.Cagios 5 151–153.

    Google Scholar 

  • Hills, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses.J. Hered. 83 189–195.

    Google Scholar 

  • Hillis, D. M., Larson, A., Davis, S. K., and Zimmer, E. A. (1990). Nucleic acids. III. Sequencing. InMolecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 318–370, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Holmes, T., Jr. (1988).Sexual Dimorphism in North American Weasels with a Phylogeny of the Mustelidae, Unpublished Ph.D. dissertation, University of Kansas, Lawrence.

    Google Scholar 

  • Howell, A. H. (1901). Revision of the skunks of the genusChincha. North American Fauna, No. 20, pp. 1–47, U.S. Dept. Agr., Bur. Biol. Surv., Washington, D.C.

    Google Scholar 

  • Howell, A. H. (1906). Revision of the skunks of the genusSpilogale. North American Fauna, No. 26, pp. 1–37, U.S. Dept. Agr., Bur. Biol. Surv., Washington, D.C.

    Google Scholar 

  • Hsu, T. C., and Mead, R. A. (1969). Mechanisms of chromosomal changes in mammalian speciation. InComparative Mammalian Cytogenetics, K. Benirschke, ed., pp. 8–17, Springer-Verlag, New York.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32 128–144.

    Google Scholar 

  • Kimura, M. (1980). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol. 16 111–120.

    Google Scholar 

  • Kluge, A. G., and Farris, J. S. (1969). Quantitative phylogenetics and the evolution of anurans.Syst. Zool. 18 1–32.

    Google Scholar 

  • Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers.Proc. Natl. Acad. Sci. USA 86 6196–6200.

    Google Scholar 

  • Mead, R. A. (1967). Age determination in the spotted skunk.J. Mammal. 48 606–616.

    Google Scholar 

  • Mead, R. A. (1968a). Reproduction in eastern forms of the spotted skunk (genusSpilogale).J. Zool. (London)156 119–136.

    Google Scholar 

  • Mead, R. A. (1968b). Reproduction in western forms of the spotted skunk (genusSpilogale).J. Mammal. 49 373–390.

    Google Scholar 

  • Mead, R. A. (1989). The physiology and evolution of delayed implantation in carnivores. InCarnivore Behavior, Ecology, and Evolution, J. L. Gittleman, ed., pp. 437–464, Comstock, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Merriam, C. H. (1902). Six new skunks of the genusConepatus.Proc. Biol. Soc. Wash. 15 161–165.

    Google Scholar 

  • O'Brien, S. J., Martenson, J. S., Eichelberger, M. A., Thorne, E. T., and Wright, F. (1989). Genetic variation and molecular systematics of the black-footed ferret. InConservation Biology of the Black-footed Ferret, U. S. Seal, E. T. Thorne, M. A. Bogan, and S. H. Anderson, eds., pp. 21–33, Yale University Press, New Haven, CT.

    Google Scholar 

  • Saccone, C., Pesole, G., and Sbisa, E. (1991). The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern.J. Mol. Evol. 33 83–91.

    Google Scholar 

  • Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1986). Analysis of enzymatically amplified beta-globin and HLA-DQalpha DNA with allele-specific oligonucleotide probes.Nature 324 163–166.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoeffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239 487–491.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors.Proc. Natl. Acad. Sci. 74 5463–5467.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old-field mouse (Peromyscus polionotus).Stud. Genet. VI Univ. Texas Publ. 7103 49–90.

    Google Scholar 

  • Simonsen, V. (1982). Electrophoretic variation in large mammals. II. The red fox,Vulpes vulpes, the stoat,Mustela erminea, the weasel,Mustela nivalis, the pole cat,Mustela putorius, the pine marten,Martes martes, the beech marten,Martes foina, and the badger,Meles meles.Hereditas 96 299–305.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981).Biometry, 2nd ed., W. H. Freeman, San Francisco.

    Google Scholar 

  • Swofford, D. L. (1990).PAUP; Phylogenetic Analysis Using Parsimony, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D. L., and Selander, R. B. (1981).BIOSYS-I, a Computer Program for the Analysis of Allelic Variation in Genetics, Department of Genetics and Development, University of Illinois, Urbana.

    Google Scholar 

  • Van Gelder, R. G. (1959). A taxonomic revision of the spotted skunks (genusSpilogale).Bull. Am. Mus. Nat. Hist. 117 233–392.

    Google Scholar 

  • Williams, S. A., and Goodman, M. (1989). A statistical test that supports a human/chimpanzee clade based on noncoding DNA sequence data.Mol. Biol. Evol. 64 325–330.

    Google Scholar 

  • Wozencraft, W. C. (1989). Classification of the Recent Carnivora. InCarnivore Behavior, Ecology, and Evolution, J. L. Gittleman, ed., pp. 569–593, Comstock, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Wright, S. (1978).Evolution and the Genetics of Populations, Vol. 4. Variability Within and Among Natural Populations, University of Chicago Press, Chicago.

    Google Scholar 

  • Yates, T. L., Barber, W. R., and Armstrong, D. M. (1987). Survey of North American collections of Recent mammals.J. Mamm. 68 (suppl.): 1–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragoo, J.W., Bradley, R.D., Honeycutt, R.L. et al. Phylogenetic relationships among the skunks: A molecular perspective. J Mammal Evol 1, 255–267 (1993). https://doi.org/10.1007/BF01041666

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041666

Key words

Navigation