Skip to main content
Log in

Reticulated vitreous carbon cathodes for metal ion removal from process streams part I: Mass transport studies

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The cathodic deposition of copper from acid sulphate solution containing copper(II) has been used to characterize the mass transport properties of reticulated vitreous carbon cathodes, operated in the flow-by mode. Current-potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for copper(II) under the conditions of the experiments and also to elucidate the effect of oxygen in the electrolyte stream. Pressure drop measurements have been used to separate the mass transport coefficient and real surface area effect for four grades of reticulated vitreous carbon, nominally having 10, 30, 60, 100 pores per inch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Lopez-Cacicedo,J. Separ. Proc. Technol. 2, (1981), 34.

    Google Scholar 

  2. Marketed by BEWT (Water Engineers) Ltd, Tything Road, Arden Forest Industrial Estate, Alcester, Warwickshire, England.

  3. G. Kreysa and C. Reynvaan,J. Appl. Electrochem. 12, (1982) 241.

    Google Scholar 

  4. Marketed by Deutsche Carbone Akt., Post 560 209, Talstrasse 112, 6000 Frankfurt/Main, West Germany.

  5. M. G. Konicek and G. Platek,New Materials and New Processes 2 (1983) 232.

    Google Scholar 

  6. Marketed by EES Corporation, 12850 Bournewood Drive, Sugar Land, TX 77478, USA.

  7. D. Simonsson,J. Appl. Electrochem. 14 (1984) 595.

    Google Scholar 

  8. Marketed by ElectroCell AB, Tumstockvagen 10, S-18366 Taby, Sweden.

  9. D. Pletcher and F. C. Walsh, ‘Industrial Electrochemistry,’ Chapman and Hall, London (1990).

    Google Scholar 

  10. ‘Electrochemical Reactors-Their Science and Technology, Part A’ (edited by M. I. Ismail) Elsevier Amsterdam (1989).

    Google Scholar 

  11. R. J. Marshall and F. C. Walsh,Surface Technol.24 (1985) 45.

    Google Scholar 

  12. B. Fleet,Coll. Czech. Chem. Comm. 53, (1988) 1107.

    Google Scholar 

  13. J. L. Weininger,AIChE Symp. Series, No 229,79 (1983) 179.

    Google Scholar 

  14. G. Kreysa,Metalloberflache 35, (1981) 6.

    Google Scholar 

  15. J. S. Newman and W. Tiedeman,Adv. Electrochem. and Electrochem Engng 11 (1978) 353.

    Google Scholar 

  16. R. E. Sioda and K. B. Keating,Electroanal. Chem. 12 (1982) 1.

    Google Scholar 

  17. D. Pletcher, F. C. Walsh and I. Whyte,I. Chem. E. Symp. Series 116 (1990) 195.

    Google Scholar 

  18. J. Wang,Electrochim. Acta 26, (1981) 1721.

    Google Scholar 

  19. A. N. Strohl and D. J. Curran,Anal. Chem. 51, (1979) 353.

    Google Scholar 

  20. W. J. Blaedel and J. Wang,51 (1979) 799.

    Google Scholar 

  21. A. N. Strohl and D. J. Curran,51 (1979) 1050.

    Google Scholar 

  22. W. J. Blaedel and J. Wang,52 (1980) 76.

    Google Scholar 

  23. ,52 (1980) 1697.

    Google Scholar 

  24. J. Wang and H. D. Dewald,J. Electrochem. Soc. 130 (1983) 1814.

    Google Scholar 

  25. I. C. Agarwal, A. M. Rochon, H. D. Gesser and A. B. Sparling,Water Res.18 (1984) 227.

    Google Scholar 

  26. M. Matlosz and J. S. Newman,J. Electrochem. Soc. 133 (1986) 1850.

    Google Scholar 

  27. A. Tentorio and U. Casolo-Ginelli,J. Appl. Electrochem. 8 (1978) 195.

    Google Scholar 

  28. D. Cox, Ph.D. Thesis, University of Southampton, England (1982).

  29. J. M. Marracino, F. Coeuret and S. Langlois,Electrochim. Acta 32 (1987) 1303.

    Google Scholar 

  30. S. Langlois and F. Coeuret,J. Appl. Electrochem. 19 (1989) 43.

    Google Scholar 

  31. 19 (1989) 51.

    Google Scholar 

  32. S. Langlois, J. O. Nanzer and F. Coeuret,19 (1989) 736.

    Google Scholar 

  33. F. C. Walsh and I. Whyte, unpublished work.

  34. I. F. MacDonald, M. S. El Sayed, K. Mow and F. A. Dullien,Inq. Eng. Chem. Fund. 18 (1979) 199.

    Google Scholar 

  35. C. W. Crawford and O. A. Plumb,J. Fluids Eng. 108 (1986) 343.

    Google Scholar 

  36. ‘The Handbook of Physics and Chemistry’, The Chemical Rubber Company.

  37. R. Greef, R. M. Peat, L. M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry,’ Ellis Horwood, Chichester (1985).

    Google Scholar 

  38. A. J. Arvia, J. C. Bazan and J. S. W. carrozza,Electrochim. Acta 11 (1966) 881.

    Google Scholar 

  39. A. R. Gordon and A. Cole,J. Phys. Chem. 40 (1936) 733.

    Google Scholar 

  40. D. Pletcher, F. C. Walsh and I. Whyte,J. Cleaner Technol., in preparation.

  41. F. Lapique, J. M. Hornut, A. Louchkoff and A. Storck,J. Appl. Electrochem. 19 (1989) 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pletcher, D., Whyte, I., Walsh, F.C. et al. Reticulated vitreous carbon cathodes for metal ion removal from process streams part I: Mass transport studies. J Appl Electrochem 21, 659–666 (1991). https://doi.org/10.1007/BF01034042

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01034042

Keywords

Navigation