Skip to main content
Log in

Theory of percolation in fluids of long molecules

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use the reference interaction site model (RISM) integral equation theory to study the percolation behavior of fluids composed of long molecules. We examine the roles of hard core size and of length-to-width ratio on the percolation threshold. The critical density ρc is a nonmonotonic function of these parameters exhibiting competition of different effects. Comparisons with Monte Carlo calculations of others are reasonably good. For critical exponents, the theory yields γ=2ν=2 for molecules of any noninfinite lengthL. WhenL is very large, the theory yields ρcL −2. These predictions compare favorably with observations of the conductivity for random assemblies of conductive fibers. The threshold region where asymptotic scaling holds requires the correlation length ξ∼(δρ/ρ c )−v to be much larger thanL. Evidently, the range of densities in this region diminishes asL increases, requiring that density deviations from ρc be no larger thanδρL −2. Otherwise, crossover behavior will be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Stauffer,Introduction to Percolation Theory (Taylor & Francis, London, 1985); D. Stauffer, inPercolation, Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Adam Hilger, Bristol, England, 1983).

    Google Scholar 

  2. A. Coniglio, U. De Angelis, and A. Forlani,J. Phys. A 10:1123 (1977).

    Google Scholar 

  3. Y. C. Chiew and E. D. Glandt,J. Phys. A 16:2599 (1983).

    Google Scholar 

  4. Y. C. Chiew and G. Stell,J. Chem. Phys. 90:4956 (1989); G. Stell,J. Phys. A 17:L859 (1984).

    Google Scholar 

  5. T. DeSimone, S. Demoulini, and R. M. Strati,J. Chem. Phys. 85:391 (1986).

    Google Scholar 

  6. J. Xu and G. Stell,J. Chem. Phys. 89:1101 (1988).

    Google Scholar 

  7. Y. C. Chiew, G. Stell, and E. D. Glandt,J. Chem. Phys. 83:761 (1985).

    Google Scholar 

  8. J. K. Percus and G. J. Yevick,Phys. Rev. 110:1 (1958); J. K. Percus, inEquilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  9. E. M. Waisman,Mol. Phys. 25:45 (1973).

    Google Scholar 

  10. S. A. Safran, I. Webman, and G. S. Grest,Phys. Rev. Lett. 55:1896 (1985).

    Google Scholar 

  11. J. G. Saven, J. L. Skinner, and J. R. Wright,J. Chem. Phys. (1991).

  12. M. Lupkowski and P. A. Monson,J. Chem. Phys. 89:3300 (1988).

    Google Scholar 

  13. D. Laria and F. Vericat,Phys. Rev. B 40:353 (1989).

    Google Scholar 

  14. D. Chandler, inStudies in Statistical Mechanics VIII, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982), p. 275; and P. A. Monson and G. P. Morriss,Adv. Chem. Phys. 77:451 (1990).

    Google Scholar 

  15. D. Chandler, J. D. Weeks, and H. C. Andersen,Science 220:787 (1983).

    Google Scholar 

  16. I. Balberg, N. Binenbaum, and N. Wagner,Phys. Rev. Lett. 52:1465 (1984); I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner,Phys. Rev. B 30:3833 (1984); A. L. R. Bug, S. A. Safran, and I. Webman,Phys. Rev. B 33:4716 (1986).

    Google Scholar 

  17. T. L. Hill,J. Chem. Phys. 23:617 (1955); T. L. Hill,Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, Massachusetts, 1960).

    Google Scholar 

  18. B. M. Ladanyi and D. Chandler,J. Chem. Phys. 62:4308 (1975).

    Google Scholar 

  19. D. Chandler and L. R. Pratt,J. Chem. Phys. 65:2925 (1976); L. R. Pratt and D. Chandler,J. Chem. Phys. 66:147 (1977).

    Google Scholar 

  20. D. Chandler and H. C. Andersen,J. Chem. Phys. 57:1930 (1972).

    Google Scholar 

  21. D. Chandler,Mol. Phys. 31:1213 (1976).

    Google Scholar 

  22. L. J. Lowden, RISM, RISMGR, RISMSK: Program Number QCPE 306, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana 47401.

  23. D. Chandler, Y. Singh, and D. M. Richardson,J. Chem. Phys. 81:1975 (1984); D. Chandler,Chem. Phys. Lett. 139:108 (1987).

    Google Scholar 

  24. K. S. Schweizer and J. G. Curro,Chem. Phys. 149:105 (1990), and references cited therein.

    Google Scholar 

  25. F. Hirata and R. M. Levy,J. Phys. Chem. 93:479 (1989).

    Google Scholar 

  26. I. Balberg and N. Binenbaum,Phys. Rev. A 35:5174 (1987).

    Google Scholar 

  27. D. M. Bigg,Polym. Eng. Sci. 19:1188 (1979).

    Google Scholar 

  28. I. Balberg,Phil. Mag. 56:991 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, K., Chandler, D. Theory of percolation in fluids of long molecules. J Stat Phys 63, 837–856 (1991). https://doi.org/10.1007/BF01029986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029986

Key words

Navigation