Skip to main content
Log in

The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The pivot algorithm is a dynamic Monte Carlo algorithm, first invented by Lal, which generates self-avoiding walks (SAWs) in a canonical (fixed-N) ensemble with free endpoints (hereN is the number of steps in the walk). We find that the pivot algorithm is extraordinarily efficient: one “effectively independent” sample can be produced in a computer time of orderN. This paper is a comprehensive study of the pivot algorithm, including: a heuristic and numerical analysis of the acceptance fraction and autocorrelation time; an exact analysis of the pivot algorithm for ordinary random walk; a discussion of data structures and computational complexity; a rigorous proof of ergodicity; and numerical results on self-avoiding walks in two and three dimensions. Our estimates for critical exponents areυ=0.7496±0.0007 ind=2 andυ= 0.592±0.003 ind=3 (95% confidence limits), based on SAWs of lengths 200⩽N⩽10000 and 200⩽N⩽ 3000, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Domb,Adv. Chem. Phys. 15:229 (1969).

    Google Scholar 

  2. D. S. McKenzie,Phys. Rep. 27:35 (1976).

    Google Scholar 

  3. S. G. Whittington,Adv. Chem. Phys. 51:1 (1982).

    Google Scholar 

  4. P. G. de Gennes,Phys. Lett. 38A:339 (1972).

    Google Scholar 

  5. J. des Cloizeaux,J. Phys. (Paris) 36:281 (1975).

    Google Scholar 

  6. M. Daoudet al., Macromolecules 8:804 (1975).

    Google Scholar 

  7. V. J. Emery,Phys. Rev. B 11:239 (1975).

    Google Scholar 

  8. C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).

    Google Scholar 

  9. R. Fernández, J. Fröhlich, and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Lecture Notes in Physics, Springer-Verlag, to appear).

  10. F. T. Wall, S. Windwer, and P. J. Gans, inMethods in Computational Physics, Vol. 1, B. Alder, S. Fernbach, and M. Rotenberg, eds. (Academic Press, New York, 1963).

    Google Scholar 

  11. S. Redner and P. J. Reynolds,J. Phys. A 14:2679 (1981).

    Google Scholar 

  12. B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981); C. Aragão de Carvalho and S. Caracciolo,J. Phys. (Paris) 44:323 (1983); C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).

    Google Scholar 

  13. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  14. M. Lal,Molec. Phys. 17:57 (1969).

    Google Scholar 

  15. O. F. Olaj and K. H. Pelinka,Makromol. Chem. 177:3413 (1976).

    Google Scholar 

  16. B. MacDonald, N. Jan, D. L. Hunter, and M. O. Steinitz,J. Phys. A 18:2627 (1985).

    Google Scholar 

  17. D. L. Hunter, N. Jan, and B. MacDonald,J. Phys. A 19:L543 (1986); K. Kelly, D. L. Hunter and N. Jan,J. Phys. A 20:5029 (1987).

    Google Scholar 

  18. S. D. Stellman and P. J. Gans,Macromolecules 5:516 (1972).

    Google Scholar 

  19. S. D. Stellman and P. J. Gans,Macromolecules 5:720 (1972).

    Google Scholar 

  20. J. J. Freire and A. Horta,J. Chem. Phys. 65:4049 (1976).

    Google Scholar 

  21. J. M. Hammersley,Proc. Camb. Phil. Soc. 53:642 (1957).

    Google Scholar 

  22. J. M. Hammersley,Proc. Camb. Phil. Soc. 57:516 (1961).

    Google Scholar 

  23. J. M. Hammersley and D. J. A. Welsh,Q. J. Math. (Oxford) Ser. 2 13:108 (1962).

    Google Scholar 

  24. H. Kesten,J. Math. Phys. 4:960 (1963).

    Google Scholar 

  25. H. Kesten,J. Math. Phys. 5:1128 (1964).

    Google Scholar 

  26. G. Slade,Commun. Math. Phys. 110:661 (1987).

    Google Scholar 

  27. J. G. Kemeny and J. L. Snell,Finite Markov Chains (Springer, New York, 1976).

    Google Scholar 

  28. M. Iosifescu,Finite Markov Processes and Their Applications (Wiley, Chichester, 1980).

    Google Scholar 

  29. K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, New York, 1967).

    Google Scholar 

  30. E. Seneta,Non-Negative Matrices and Markov Chains, 2nd ed. (Springer, New York, 1981).

    Google Scholar 

  31. M. Hamermesh,Group Theory and Its Application to Physical Problems (Addison-Wesley, Reading, Massachusetts, 1962), Chapter 2.

    Google Scholar 

  32. J. Garcia de la Torre, A. Jiménez, and J. J. Freire,Macromolecules 15:148 (1982).

    Google Scholar 

  33. B. Nienhuis,J. Stat. Phys. 34:731 (1984).

    Google Scholar 

  34. A. J. Guttmann,J. Phy. A 20:1839 (1987).

    Google Scholar 

  35. H. Saleur,J. Phys. A 19:L807 (1986).

    Google Scholar 

  36. B. Duplantier,Phys. Rev. B 35:5290 (1987).

    Google Scholar 

  37. D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973), Section 6.4.

    Google Scholar 

  38. E. Horowitz and S. Sahni,Fundamentals of Data Structures (Computer Science Press, Potomac, Maryland, 1976), Section 9.3.

    Google Scholar 

  39. K. Suzuki,Bull. Chem. Soc. Japan 41:538 (1968).

    Google Scholar 

  40. Z. Alexandrowicz,J. Chem. Phys. 51:561 (1969).

    Google Scholar 

  41. Z. Alexandrowicz and Y. Accad,J. Chem. Phys. 54:5338 (1971).

    Google Scholar 

  42. N. Madras and A. D. Sokal, in preparation.

  43. D. Goldsman, Ph. D. thesis, School of Operations Research and Industrial Engineering, Cornell University (1984).

  44. L. Schruben,Op. Res. 30:569 (1982).

    Google Scholar 

  45. L. Schruben,Op. Res. 31:1090 (1983).

    Google Scholar 

  46. J. R. Baxter and R. V. Chacon,Ill. J. Math. 20:467 (1976).

    Google Scholar 

  47. D. J. Aldous,J. Lond. Math. Soc. 25:564 (1982).

    Google Scholar 

  48. D. Aldous, inSéminaire de Probabilités XVII (Lecture Notes in Mathematics No. 986, Springer-Verlag, Berlin, 1983).

    Google Scholar 

  49. D. Aldous and P. Diaconis,Am. Math. Monthly 93:333 (1986).

    Google Scholar 

  50. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed. (Wiley, New York, 1968), pp. 224–225.

    Google Scholar 

  51. P. Grassberger,Z. Phys. B 48:255 (1982).

    Google Scholar 

  52. C. Domb and F. T. Hioe,J. Chem. Phys. 51:1915 (1969).

    Google Scholar 

  53. D. E. Knuth,The Art of Computer Programming, Vol. 2, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1973), pp. 102–103.

    Google Scholar 

  54. S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975), Chapter 3.

    Google Scholar 

  55. I. Majid, Z. V. Djordjevic, and H. E. Stanley,Phys. Rev. Lett. 51:1433 (1983).

    Google Scholar 

  56. J. Adler,J. Phys. A 16:L515 (1983).

    Google Scholar 

  57. Z. V. Djordjevic, I. Majid, H. E. Stanley, and R. J. dos Santos,J. Phys. A 16:L519 (1983).

    Google Scholar 

  58. V. Privman,Physica 123A:428 (1984).

    Google Scholar 

  59. A. J. Guttmann,J. Phys. A 17:455 (1984).

    Google Scholar 

  60. D. C. Rapaport,J. Phys. A 18:L201 (1985).

    Google Scholar 

  61. D. C. Rapaport,J. Phys. A 18:113 (1985).

    Google Scholar 

  62. S. Havlin and D. Ben-Avraham,Phys. Rev. A 27:2759 (1983).

    Google Scholar 

  63. D. C. Rapaport,J. Phys. A 18:L39 (1985).

    Google Scholar 

  64. J. W. Lyklema and K. Kremer,Phys. Rev. B 31:3182 (1985).

    Google Scholar 

  65. F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:637 (1959).

    Google Scholar 

  66. F. Mandel,J. Chem. Phys. 70:3984 (1979).

    Google Scholar 

  67. F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:634 (1959).

    Google Scholar 

  68. A. K. Kron,Vysokomol. Soyed. 7:1228 (1965) [Polymer Sci. USSR 7:1361 (1965)].

    Google Scholar 

  69. A. K. Kronet al., Molek. Biol. 1:576 (1967) [Molec. Biol. 1:487 (1967)].

    Google Scholar 

  70. F. T. Wall and F. Mandel,J. Chem. Phys. 63:4592 (1975).

    Google Scholar 

  71. N. Madras and A. D. Sokal,J. Stat. Phys. 47:573 (1987).

    Google Scholar 

  72. E. Brézin, J.-C. LeGuillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  73. R. M. Karp and M. Luby, in24th Annual Symposium on Foundations of Computer Science (IEEE, New York, 1983), pp. 56–64.

    Google Scholar 

  74. R. M. Karp, M. Luby, and N. Madras, Monte-Carlo Approximation Algorithms for Enumeration Problems, submitted toJ. Algorithms.

  75. A. Birnbaum and W. C. Healy Jr.,Ann. Math. Stat. 31:662 (1960).

    Google Scholar 

  76. S. Caracciolo and A. D. Sokal,J. Phys. A 19:L797 (1986).

    Google Scholar 

  77. A. D. Sokal and L. E. Thomas, in preparation.

  78. S. Caracciolo, U. Glaus, and A. D. Sokal, in preparation.

  79. S. Caracciolo and A. D. Sokal,J. Phys. A 20:2569 (1987).

    Google Scholar 

  80. D. S. Gaunt and A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974).

    Google Scholar 

  81. A. J. Guttmann, in preparation, to appear inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York).

  82. I. C. Enting and A. J. Guttmann,J. Phys. A 18:1007 (1985).

    Google Scholar 

  83. M. B. Priestley,Spectral Analysis and Time Series (Academic Press, London, 1981).

    Google Scholar 

  84. T. W. Anderson,The Statistical Analysis of Time Series (Wiley, New York, 1971).

    Google Scholar 

  85. J. Goodman and A. D. Sokal,Phys. Rev. Lett. 56:1015 (1986).

    Google Scholar 

  86. M. Benhamou and G. Mahoux,J. Physique Lett. 46:L-689 (1985).

    Google Scholar 

  87. T. A. Witten and L. Schäfer,J. Phys. A 11:1843 (1978).

    Google Scholar 

  88. J. des Cloizeaux,J. Physique 42:635 (1981).

    Google Scholar 

  89. M. K. Kosmas,J. Phys. A 14:2779 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madras, N., Sokal, A.D. The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. J Stat Phys 50, 109–186 (1988). https://doi.org/10.1007/BF01022990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022990

Key words

Navigation