Skip to main content
Log in

Crack propagation in sandstone: Combined experimental and numerical approach

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

A combined experimental and numerical approach is adopted to investigate crack propagation in sandstone. Experiments on two types of sandstones show a simular behaviour as found in tests on concrete specimens. The heterogeneity of the material in combination with the stress situation, as a result of the applied load, governs the direction of crack propagation. Cracks that develop are not continuous, but overlaps exist mainly around the grain particles in the material. A simple lattice model, in which the material is schematized as a network of small beams, is adopted to simulate the experiments. Using the simulations carried out with the lattice model, the control parameter for stable displacement controlled four-point-shear tests was determined. The crack patterns obtained with the model are in good agreement with the experimental observations. However further study is needed to predict the load-displacement response correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bažant, Z. P., Pfeiffer, P. A. (1986): Shear fracture test of concrete. Mater. Struct. (RILEM) 110 (19), 111–121.

    Google Scholar 

  • Bažant, Z. P., Tabbara, M. R., Kazemi, M. T., Pijaudier-Cabot, G. (1990): Random particle model for fracture of aggregate or fiber composites. J. Engng. Mech. Div. ASCE 116 (8), 6686–1705.

    Google Scholar 

  • Berg, A., Svensson, U. (1991): Datorsimulering och analys av brottfvrlopp i en heterogen materialstruktur, Report No. TVSM-5050, Lund Institute of Technology, Division of Structural Mechanics, Lund, Sweden (in Swedish).

    Google Scholar 

  • Burt, N. J., Dougill, J. W. (1977): Progressive failure in a model heterogenous medium, J. Engng. Mech. Div. ASCE 103 (3), 365–376.

    Google Scholar 

  • Herrmann, H. J., Hansen, H., Roux, S. (1989): Fracture of disordered, elastic lattices in two dimensions, Phys. Rev. B 39 (1), 637–648.

    Google Scholar 

  • ISRM (1979): Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 135–140.

    Google Scholar 

  • Moukarzel, C., Herrmann H. J. (1992): A vectorizable random lattice, Preprint HLRZ 1/92, HLRZ-KFA Jülich, Germany.

    Google Scholar 

  • Schlangen, E. (1993): Experimental and numerical analysis of fracture processes in concrete, PhD-thesis, Delft University of Technology, Delft, 121.

    Google Scholar 

  • Schlangen, E., Van Mier, J. G. M. (1992a): Fracture modelling of granular materials. In: Mark, J. E., Glicksman M. E., Marsh S. P. (eds.), Computational methods in materials science, MRS Symposium Proc. Vol. 278, Pittsburgh, 153–158.

  • Schlangen, E. Van Mier, J. G. M. (1992b): Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cem. Concr. Compos. 14, 105–118.

    Google Scholar 

  • Schlangen, E., Van Mier, J. G. M. (1992c): Micromechanical analysis of fracture of concrete, Int. J. Damage Mech. 1, 435–454.

    Google Scholar 

  • Schlangen, E., Van Mier, J. G. M. (1994): Fracture simulations in concrete and rock using a random lattice. In: Siriwardane, H. J., Zaman, M. M. (eds.), Computer methods and advances in geomechanics, Balkema, Rotterdam, 1641–1646.

    Google Scholar 

  • Schorn, H., Rode, U. (1987): 3-D-modeling of process zone in concrete by numerical simulation, In: Shah, S. P., Swartz, S. E. (eds.), Proc. SEM/RILEM Int. Conf. Fracture of Concrete and Rock Springer, Wien New York, 220–228.

    Google Scholar 

  • Van Mier, J. G. M. (1990): Fracture process zone in concrete: a three dimensional growth process, In: Firrao, D. (ed.), Fracture behaviour and design of materials and structures, EMAS Publishers, Warley, 567–572.

    Google Scholar 

  • Van Mier, J. G. M. (1991): Mode I fracture of concrete: discontinuous crack growth and crack interface grain bridging. Cem. Concr. Res. 21, 1–15.

    Google Scholar 

  • Van Mier, J. G. M., Schlangen, E., Vervuurt, A. (1993): Analysis of fracture mechanisms in particle composites, In: Huet, C. (ed.), Micromechanisms of concrete and cementitious composites, Presses Polytechniques et Universitaires Romandes, Lausanne, 159–170.

    Google Scholar 

  • Van Mier, J. G. M., Visser, J. H. M. (1993): Fundamental fracture mechanics in concrete and sandstone, Research report 25.5-93-5, Delft University of Technology, Stevin Laboratory, Delft.

    Google Scholar 

  • Zubelewicz, A., Bažant, Z. P. (1987): Interface modeling of fracture in aggregate composites. J. Engng. Mech. Div. ASCE 113 (11), 1619–1630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlangen, E., Van Mier, J.G.M. Crack propagation in sandstone: Combined experimental and numerical approach. Rock Mech Rock Engng 28, 93–110 (1995). https://doi.org/10.1007/BF01020063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020063

Keywords

Navigation