Skip to main content
Log in

Particle behavior in thermal plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this overview, effects exerted on the motion and on heat and mass transfer of particulates injected into a thermal plasma are discussed, including an assessment of their relative importance in the context of thermal plasma processing of materials. Results of computer experiments are shown for particle sizes ranging from 5–50 μm, and for alumina and tungsten as sample materials. The results indicate that (i) the correction terms required for the viscous drag and the convective heat transfer due to strongly varying properties are the most important factors; (ii) noncontinuum effects are important for particle sizes <10 μm at atmospheric pressure, and these effects will be enhanced for smaller particles and/or reduced pressures; (iii) the Basset history term is negligible, unless relatively large and light particles are considered over long processing distances; (iv) thermophoresis is not crucial for the injection of particles into thermal plasmas; (v) turbulent dispersion becomes important for particle <10 μm in diameter; and (vi) vaporization describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Maecker,Z. Phys. 141, 198 (1955)

    Google Scholar 

  2. P. J. Shaylen and M. T. C. Fanz,J. Phys. D: Appl. Phys. 10, 1659.

  3. J. Mostaghimi-Tehrani and E. Pfender,Plasma. Chem. Plasma Process. 4, 129 (1984).

    Google Scholar 

  4. D. M. Chen and E. Pfender,IEEE Trans. Plasma Sci. PS9, 4, 265 (1981).

    Google Scholar 

  5. E. Pfender, inGaseous Electronics, Vol. 1, Academic Press, New York (1978).

    Google Scholar 

  6. R. Clift, J. R. Grace, and M. E. Weber,Bubbles, Drops and Particles, Academic Press, New York (1978).

    Google Scholar 

  7. C. T. Crowe, inPulverized Coal Combustion and Gasification, L. D. Smoot and D. T. Pratt, eds., Plenum, New York (1979), p. 107.

    Google Scholar 

  8. J. A. Lewis and W. H. Gauvin,AIChE J. 19, 982 (1973).

    Google Scholar 

  9. C. Sheer, S. Korman, D. J. Angier, and R. P. Cahn, inFine Particles, W. E. Kuhn, ed., 2nd International Conference, The Electrothermics Metallurgy Div., Electrochemical Society, Boston, Massachusetts (1974).

  10. F. M. White,Viscous Fluid Flow, McGraw-Hill, New York (1974).

    Google Scholar 

  11. Y. C. Lee, K. C. Hsu, and E. Pfender,5th International Symposium on Plasma Chemistry 2, 795 (1981).

    Google Scholar 

  12. Y. C. Lee, Trajectories and Heating of Particles Injected into a Thermal Plasma, Master thesis, Department of Mechanical Engineering, University of Minnesota (1982).

  13. X. Chen and E. Pfender,Plasma Chem. Plasma Process. 3, 97 (1983).

    Google Scholar 

  14. X. Chen and E. Pfender,Plasma Chem. Plasma Process. 3, 351 (1983).

    Google Scholar 

  15. W. F. Phillips,Phys. Fluids 18, 1089 (1975).

    Google Scholar 

  16. Y. C. Lee and E. Pfender,Plasma Chem. Plasma Process. 5, 3 (1985).

    Google Scholar 

  17. L. Talbot, inRarefied Gas Dynamics, Vol. 74, S. S. Fisher, ed., AIAA Book (1981), p. 467.

  18. J. R. Brock,J. Colloid Sci. 17, 768 (1962).

    Google Scholar 

  19. J. R. Brock,Nature 204, 69 (1964).

    Google Scholar 

  20. X. Chen, Y. C. Lee, and E. Pfender,6th International Symposium on Plasma Chemistry 1, 51 (1983).

    Google Scholar 

  21. Y. C. Lee, Modeling Work in Thermal Plasma Processing, Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota (1984).

  22. M. I. Boulos,IEEE Trans. Plasma Sci. 4, 93 (1978).

    Google Scholar 

  23. M. Vardelle A. Vardelle, P. Fauchais, and M. I. Boulos,AIChE J. 29, 236 (1983).

    Google Scholar 

  24. Y. C. Lee, K. C. Hsu, and E. Pfender,Fifth International Symposium on Plasma Chemistry 2, 795 (1981).

    Google Scholar 

  25. E. Bourdin, P. Fauchais, and M. I. Boulos,Int. J. Heat Mass Transfer 26, 567 (1983).

    Google Scholar 

  26. B. Waldie,The Chemical Engineer May, 188 (1972).

    Google Scholar 

  27. C. Bonet, M. Daguenet, and M. Dumargue,Int. J. Heat Mass Transfer 17, 643 (1974).

    Google Scholar 

  28. C. Bonet, M. Daguenet, and M. Dumargue,Int. J. Heat Mass Transfer 17, 1559 (1974).

    Google Scholar 

  29. X. Chen and E. Pfender,Plasma Chem. Plasma Process. 2, 293 (1982).

    Google Scholar 

  30. T. Yoshida and K. Akashi,J. Appl. Phys. 48, 2252 (1977).

    Google Scholar 

  31. J. K. Fizsdon,Int. J. Heat Mass Transfer 22, 749 (1979).

    Google Scholar 

  32. X. Chen and E. Pfender,Plasma Chem. Plasma Process. 2, 185 (1982).

    Google Scholar 

  33. F. J. Harvey and T. N. Meyer,Metallurgical Trans. B 9B, 615 (1978).

    Google Scholar 

  34. N. N. Sayegh and W. H. Gauvin,AIChE J. 25, 522 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfender, E. Particle behavior in thermal plasmas. Plasma Chem Plasma Process 9 (Suppl 1), 167S–194S (1989). https://doi.org/10.1007/BF01015878

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015878

Key Words

Navigation