Skip to main content
Log in

Characterization of silicon nitride particles synthesized in an atmospheric-pressure convection-stabilized arc

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Silicon nitride powders were synthesized in an atmospheric-pressure convection-stabilized arc using silicon and ammonia as reactants. The morphology and particle size distributions of the silicon nitride particles were characterized by SEM, TEM, and electron diffraction analyses. The silicon nitride particles collected in the plasma reactor were formed by either gas-condensed phase reactions or chemical vapor reactions. The morphologies of the particles formed by gas-condensed phase reactions consisted of β-Si3N4 prisms, α-Si3N4 matte, α-Si3N4 needles, and spaghetti-like whiskers. For the homogeneously nucleated particles, the morphologies included dendrites, needles, platelets, and amorphous particles. Most of the particles formed were aggregates with particle size distributions ranging from 500 to 1500 Å depending on the location of injection of the reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra,J. Am. Ceram. Soc.,65, 324 (1982).

    Google Scholar 

  2. Y. P. Chyou, R. M. Young, and E. Pfender, ISPC-7, C. J. Timmermans, ed., University of Eindhoven, Eindhoven, The Netherlands, Vol. 3 (1985), p. 892.

    Google Scholar 

  3. P. Kong, R. M. Young, T. T. Huang, and E. Pfender, ISPC-7, C. J. Timmermans, ed., University of Eindhoven, Eindhoven, The Netherlands, Vol. 2 (1985), p. 674.

    Google Scholar 

  4. Yl Chang, Ph. D. Thesis, University of Minnesota (1986).

  5. K. Kijima, T. Yamana, and H. Tanaka,J. Cryst. Growth,24/25, 183 (1974).

    Google Scholar 

  6. K. W. Bean, P. S. Gleim, W. R. Runyan, and R. L. Yeakley,J. Electrochem. Soc. 114, 733 (1967).

    Google Scholar 

  7. K. Niihara and H. Toshio,J. Mater. Sci.,14, 1952 (1979).

    Google Scholar 

  8. P. Popper and S. N. Ruddlesden,Trans. Br. Ceram. Soc. 60, 903 (1951).

    Google Scholar 

  9. I. K. Uatu and M. Maccauley,Mater. Res. Bull. 9, 917 (1974).

    Google Scholar 

  10. K. Inomata and T. Yamane,J. Cryst. Growth,21, 317 (1974).

    Google Scholar 

  11. K. Inomata and Z. Inoue,J. Ceram. Assoc. Jpn. 81, 441 (1973).

    Google Scholar 

  12. K. Kijma, H. Tanaka, and N. Setaka,J. Cryst. Growth,24/25, 183 (1974).

    Google Scholar 

  13. A. G. Evans and J. V. Sharp,J. Mater. Sci.,6, 1292 (1971).

    Google Scholar 

  14. H. M. Jennings and M. H. Richman,J. Mater. Sci.,11, 2087 (1976).

    Google Scholar 

  15. A. J. Moulson,J. Mater. Sci.,14, 1017 (1979).

    Google Scholar 

  16. H. M. Jennings, S. C. Danforth, and M. H. Richman,J. Mater. Sci. 14, 1013 (1979).

    Google Scholar 

  17. H. M. Jennings,J. Mater. Sci.,19, 951 (1983).

    Google Scholar 

  18. A. Atkinson, P. J. Leatt, E. W. Poberts, and A. J. Moulson,J. Mater. Sci. 9, 981 (1974).

    Google Scholar 

  19. D. S. Thompson, and P. L. PrattScience of Ceramics Vol. 3 G. H. Stewart, ed., Academic Press, London (1967), p. 33.

    Google Scholar 

  20. R. Grun,J. Cryst. Growth 46, 143 (1979).

    Google Scholar 

  21. V. Grisbkov, V. Silaev, B. Schchetanov, E. Umantesu, and A. Isaiki,Sov. Phys. Crystallogr. 16, 852 (1972).

    Google Scholar 

  22. Iwao Yamai and Hajime Satio,J. Cryst. Growth 45, 511 (1978).

    Google Scholar 

  23. T. Okabe and M. Nakagawa,J. Cryst. Growth 46, 504 (1979).

    Google Scholar 

  24. P. D. Bayer and R. F. Cooper,J. Mater. Sci. 2, 237 (1967).

    Google Scholar 

  25. O. J. Gregory and M. H. Richman,Metallography 15, 157 (1982).

    Google Scholar 

  26. Y. Tarui, H. Teshima, K. Okura, and A. Minamiya,J. Electrochem. Soc. 110, 1167 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Kong, P. & Pfender, E. Characterization of silicon nitride particles synthesized in an atmospheric-pressure convection-stabilized arc. Plasma Chem Plasma Process 9, 73–93 (1989). https://doi.org/10.1007/BF01015827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015827

Key Words

Navigation