Skip to main content
Log in

Mathematical properties of position-space renormalization-group transformations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Properties of “position-space” or “cell-type” renormalization-group transformations from an Ising model object system onto an Ising model image system, of the type introduced by Niemeijer, van Leeuwen, and Kadanoff, are studied in the thermodynamic limit of an infinite lattice. In the case of a KadanofF transformation with finitep, we prove that if the magnetic field in the object system is sufficiently large (i.e., the lattice-gas activity is sufficiently small), the transformation leads to a well-defined set of image interactions with finite norm, in the thermodynamic limit, and these interactions are analytic functions of the object interactions. Under the same conditions the image interactions decay exponentially rapidly with the geometrical size of the clusters with which they are associated if the object interactions are suitably short-ranged. We also present compelling evidence (not, however, a completely rigorous proof) that under other conditions both the finite- and infinite-p (“majority rule”) transformations exhibit peculiarities, suggesting either that the image interactions are undefined (i.e., the transformation does not possess a thermodynamic limit) or that they fail to be smooth functions of the object interactions. These peculiarities are associated (in terms of their mathematical origin) with phase transitions in the object system governed not by the object interactions themselves, but by a modified set of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Wilson and J. Kogut,Phys. Rep. 12C:75 (1974); M. E. Fisher,Rev. Mod. Phys. 46:597 (1974); S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, (1976); C. Domb and M. S. Green, eds.,Phase Transitions and Critical Phenomena (Academic, London, 1976), Vol. 6; D. J. Wallace and R. K. P. Zia,Rep. Prog. Phys. 41:1 (1978).

    Google Scholar 

  2. G. Gallavotti and H. J. F. Knops,Commun. Math. Phys. 36:171 (1974); G. Gallavotti and A. Martin-Löf,Nuovo Cimenta 25B:425 (1975).

    Google Scholar 

  3. D. R. Nelson and M. E. Fisher,Ann. Phys. (N.Y.) 91:226 (1975).

    Google Scholar 

  4. Th. Niemeijer and J. M. J. van Leeuwen,Phys. Rev. Lett. 31:1411 (1973); and inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, London, 1976), Vol. 6, p. 425.

    Google Scholar 

  5. L. P. Kadanoff,Phys. Rev. Lett. 34:1005 (1975).

    Google Scholar 

  6. L. P. Kadanoff, A. Houghton, and M. C. Yalabik,J. Stat. Phys. 14:171 (1976).

    Google Scholar 

  7. H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, 1971), p. 91.

  8. D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  9. R. L. Dobrushin,Funct. Anal. Appl. 2:292 (1968).

    Google Scholar 

  10. O. E. Lanford III and D. Ruelle,Commun. Math. Phys. 13:194 (1969).

    Google Scholar 

  11. O. E. Lanford III, inStatistical Mechanics and Mathematical Problems, A. Lenard, ed. (Springer-Verlag, Berlin, 1973), p. 1.

    Google Scholar 

  12. R. B. Griffiths and D. Ruelle,Commun. Math. Phys. 23:169 (1971).

    Google Scholar 

  13. G. Gallavotti and S. Miracle-Sole,Commun. Math. Phys. 7:274 (1968).

    Google Scholar 

  14. D. Ruelle,Ann. Phys. (N. Y.) 25:109 (1963).

    Google Scholar 

  15. H. J. Brascamp,Commun. Math. Phys. 18:82 (1970).

    Google Scholar 

  16. M. Duneauet al., Commun. Math. Phys. 35:307 (1976); M. Duneau and B. Souillard,Commun. Math. Phys. 47:155 (1976).

    Google Scholar 

  17. J. L. Lebowitz and O. Penrose,Commun. Math. Phys. 11:99 (1968).

    Google Scholar 

  18. J. L. Lebowitz,J. Stat. Phys. 16:3 (1977).

    Google Scholar 

  19. L. P. Kadanoffet al., Rev. Mod. Phys. 39:395 (1967); M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  20. A. Bienenstock and J. Lewis,Phys. Rev. 160:393 (1967); R. L. Dobrushin,Funct. Anal. Appl. 2:302 (1968).

    Google Scholar 

  21. I. Syozi, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, London, 1972), Vol. 1, p. 270.

    Google Scholar 

  22. G. A. Baker, Jr. and S. Krinsky,J. Math. Phys. 18:590 (1977).

    Google Scholar 

  23. J. L. Kelley,General Topology (Van Nostrand, Princeton, N.J., 1955).

    Google Scholar 

  24. P. R. Halmos,Measure Theory (Van Nostrand Reinhold, New York, 1950).

    Google Scholar 

  25. G. C. Rota,Z. Wahrscheinlichkeitstheorie 2:340 (1964).

    Google Scholar 

  26. G. Del Grosso,Commun. Math. Phys. 37:141 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF Grant No. DMR 76-23071.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, R.B., Pearce, P.A. Mathematical properties of position-space renormalization-group transformations. J Stat Phys 20, 499–545 (1979). https://doi.org/10.1007/BF01012897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012897

Key words

Navigation