Skip to main content
Log in

Transfer RNA gene organization and RNase P

  • Special Issue: RNase MRP/RNase P Systems
  • RNase P
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mature tRNAs are remarkably similar in all cells. However, the primary transcripts from tRNA genes can vary considerably due to differences in gene organization. RNase P must be able to recognize the elements that are common to all tRNA precursors to accurately remove the 5'-leader sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

rT:

ribothymidine

References

  1. Deutscher MP (1995) in ‘tRNA’, D. Söll and U. L. RajBhandary, Editors, ASM Press, Washington, D.C. pp: 51–65

    Google Scholar 

  2. Schedl P, Roberts J & Primakoff P (1976) Cell 8: 581–594

    Google Scholar 

  3. Sakano H & Shimura Y (1975) Proc. Natl. Acad. Sci. USA 72: 3369–3373

    Google Scholar 

  4. Shimura Y, Sakano H & Nagaura F (1979) Eur. J. Biochem. 86: 267–281

    Google Scholar 

  5. Ikemura T, Shimura Y, Sakano H & Ozeki H (1975) J. Mol. Biol. 96: 69–86

    Google Scholar 

  6. Sakano H & Shimura Y (1978) J. Mol. Biol. 123: 287–326

    Google Scholar 

  7. Bartkiewicz M, Gold H & Altman S (1989) Genes. Dev. 3: 488–499

    Google Scholar 

  8. Darr SC, Pace B & Pace NR (1990) J. Biol. Chem. 265: 12927–12932

    Google Scholar 

  9. Komine Y, Adachi T, Inokuchi H & Ozeki H (1990) J. Mol. Biol. 212: 579–598

    Google Scholar 

  10. Garrity DB & Zahler ZA (1993) J. Bacteriol. 175: 6512–6517

    Google Scholar 

  11. Green CJ & Vold BS (1983) Nucleic Acids Res. 11: 5763–5774

    Google Scholar 

  12. Green C & Vold BS (1992) J. Bacteriol. 174: 3147–3151

    Google Scholar 

  13. Loughney K, Lund E & Dahlberg JE (1982) Nucleic Acids Res. 10: 1607–1624

    Google Scholar 

  14. Ogasawara N, Moriya S & Yoshikawa H (1983) Nucleic Acids Res. 11: 6301–6318

    Google Scholar 

  15. Rudner R, Chevrestt A, Buchholz SR, Studamire B, White A-M & Jarvis JD (1993) J. Bacteriol. 175: 503–509

    Google Scholar 

  16. Wawrousek EF & Hansen JN (1983) J. Biol. Chem. 258: 291–299

    Google Scholar 

  17. Wawrousek EF, Narasimhan N & Hansen JN (1984) J. Biol. Chem. 259: 3694–3702

    Google Scholar 

  18. Yamada Y, Ohki M & Ishikura H (1983) Nucleic Acids Res. 86: 3589–3593

    Google Scholar 

  19. Muto A, Andachi Y, Yuzawa H, Yamao F & Osawa S (1990) Nucleic Acids Res. 18: 5037–5043

    Google Scholar 

  20. Rogers MJ, Steinmetz AA & Walker RT (1987) Israel J. Med. Sci. 23: 357–360

    Google Scholar 

  21. Samuelsson T, Elias P, Lustig F & Guindy YS (1985) Biochem. J. 232: 223–228

    Google Scholar 

  22. Tanaka R, Andachi Y & Muto A (1991) Nucleic Acids Res. 19: 6787–6792

    Google Scholar 

  23. Green C & BS Vold (1993) J. Bacteriol. 175: 5091–5096

    Google Scholar 

  24. Vold BS, Okamoto K, Murphy BJ & Green CJ (1988) J. Biol. Chem. 263: 14480–14484

    Google Scholar 

  25. Vold BS, Green CJ, Narasimhan N, Strem M & Hansen JN (1988) J. Biol. Chem. 263: 14485–14490

    Google Scholar 

  26. Vold BS & Green CJ (1985) In J. A. Hoch & P. Setlow (eds). The Molecular Biology of Microbial Differentiation. ASM Press, Washington, D.C., pp: 135–141

    Google Scholar 

  27. Vold BS & Green CJ (1988) J. Biol. Chem. 263: 14390–14396

    Google Scholar 

  28. Schmidt O, Mao J-I, Ogden R., Beckman J, Sakano H, Abelson J & Söll D (1980) Nature 287: 750–752

    Google Scholar 

  29. Hottinger H, Pearson D, Yamao F, Gamulin V, Cooley L, Cooper T & Söll D (1982) Mol. Gen. Genet. 188: 219–224

    Google Scholar 

  30. Willis I, Hottinger A, Pearson D, Chisholm V, Leupold U & Söll D (1984) EMBO J. 3: 1573–1580

    Google Scholar 

  31. Mao J, Schmidt O & Söll D (1980) Cell 21: 509–516

    Google Scholar 

  32. Willis I, Frendewey D, Nichols M, Hottinger-Werlen A, Schaack J & Söll D (1986) J. Biol. Chem. 261: 5878–5885

    Google Scholar 

  33. Haas ES, Daniels CJ & Reeve JN (1989) Gene 77: 253–263

    Google Scholar 

  34. Kaine BP (1987) J. Mol. Evol. 25: 248–254

    Google Scholar 

  35. Wich G, Leinfelder W & Böck A (1987) EMBO J. 6: 523–528

    Google Scholar 

  36. Sprinzl M, Hartman T, Weber J, Blank J & Zeidler R (1989) Nucleic Acids Res. 17: r1-r172

    Google Scholar 

  37. Seidman, JG, Barrell BG & McClain WH (1975) 99: 733–760

  38. McClain WH (1977) Accounts Chem. Res. 10: 418–425

    Google Scholar 

  39. McClain WH, Barrell BG & Seidman JG (1975) 99: 717–732

  40. Guerrier-Takada C, McClain WH & Altman S (1984) Cell 38: 219–224

    Google Scholar 

  41. Kirsebom LA & Svärd SG (1992) Nucleic Acids Res. 20: 425–432

    Google Scholar 

  42. Kirsebom LA & Svärd SG (1993) J. Mol. Biol. 231: 594–604

    Google Scholar 

  43. Kirsebom LA & Svärd SG (1994) Embo J 13: 4870–4876

    Google Scholar 

  44. Oh B-K & Pace NR (1994) Nucleic Acids Res. 22: 4087–4094

    Google Scholar 

  45. Leinfelder W, Zehelein E, Mandrand-Berthelot M & Böck A (1988) Nature 331: 723–725

    Google Scholar 

  46. Orellana O, Cooley L & Söll D (1986) Mol. Cell. Biol. 6: 525–529

    Google Scholar 

  47. Burkard U & Söll D (1988b) Nucleic Acids Res. 16: 11617–11624

    Google Scholar 

  48. Burkard U, Willis I, & Söll D (1988) J. Biol. Chem. 263: 2447–2451

    Google Scholar 

  49. Green CJ & Vold BS (1988) J. Biol. Chem. 263: 652–657

    Google Scholar 

  50. Burkard U & Söll D (1988) J. Biol. Chem. 263: 9578–9581

    Google Scholar 

  51. Mitchelson K & Stephen J (1991) Nucleic Acids Res. 19: 3150

    Google Scholar 

  52. Cooley L, Appel B & Söll D (1982) Proc. Natl. Acad. Sci. USA. 79: 6475–6479

    Google Scholar 

  53. L'Abbe D., Lang B.F, Dejardins P & Morais R (1990) J. Biol. Chem. 265: 2988–2992.

    Google Scholar 

  54. Holm PS & Krupp G (1992) Nucleic Acids Res. 20: 421–423.

    Google Scholar 

  55. Krupp G, Kahle D, Vogt T & Char S (1991) J. Mol. Biol. 217: 637–648

    Google Scholar 

  56. Sturchler C, Westhof E, Carbon P & Krol A (1993) Nucleic Acids Res. 21: 1073–1079

    Google Scholar 

  57. van Tol H & Beier H (1988) Nucleic Acids. Res. 16: 1951–1966

    Google Scholar 

  58. Green CJ & Vold BV (1990) J. Biol. Chem. 265: 12139–12142

    Google Scholar 

  59. Kaine BP, Gupta R & Woese CR (1983) Proc. Natl. Acad. Sci. 80: 3309–3312

    Google Scholar 

  60. Palmer JR, Nieuwlandt DT & Daniels CJ (1994) J. Bacteriol. 176: 3820–3823

    Google Scholar 

  61. Leontis N, DaLio A., Strobel M & Engelke D (1988) Nucleic Acids Res. 16: 2537–2552

    Google Scholar 

  62. Baldi MI, Mattoccia E, Bufardeci E, Fabbri S, & Tocchini-Valentini GP (1992) Science 255: 1404–1408

    Google Scholar 

  63. Reyes VM & Abelson J (1988) Cell 55: 719–730

    Google Scholar 

  64. Thompson LD & Daniels CJ (1988) J. Biol. Chem. 263: 17951–17959

    Google Scholar 

  65. Thompson LD & Daniels CJ (1990) J. Biol. Chem. 265: 18104–18111

    Google Scholar 

  66. McClain WH, Guerrier-Takada C & Altman S (1987) Science 238: 527–530

    Google Scholar 

  67. Carrara G, Calandra P, Fruscoloni P & Tocchini-Valentini GP (1995) Proc. Natl. Acad. Sci. USA 92: 2627–2631

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, C.J. Transfer RNA gene organization and RNase P. Mol Biol Rep 22, 181–185 (1995). https://doi.org/10.1007/BF00988726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988726

Key words

Navigation