Skip to main content
Log in

Genomic in situ hybridization inArachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou, Y. A.-M., Gregory, W. C., Cooper, W. E., 1974: Sources and nature of resistance toCercospora arachidicola Hori andCercosporidium personatum (Beck & Curtis)Deighton inArachis species. — Peanut Sci.1: 6–11.

    Google Scholar 

  • Anamthawat-Jónsson, K., Schwarzacher, T., Leitch, A. R., Bennett, M. D., Heslop-Harrison, J. S., 1990: Discrimination between closely relatedTriticeae species using genomic DNA as a probe. — Theor. Appl. Genet.79: 721–728.

    Google Scholar 

  • —, 1993: Behaviour of parental genomes in the hybridHordeum vulgare xH. bulbosum. — J. Heredity84: 78–82.

    Google Scholar 

  • Bass, M. H., Arant, F. S., 1973: Insect pests. — InSummerfield, R. J., Bunting, A. H., (Eds): Peanuts — Culture and uses, pp. 338–428. — Stillwater, OK: American Peanut Research Education Association.

    Google Scholar 

  • Bennett, M. D., 1995: The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. — InBrandham, P. E., Bennett, M. D., (Eds): Kew Chromosome Conference IV, pp. 167–183. — Richmond: Royal Botanic Gardens, Kew.

    Google Scholar 

  • Bianchi-Hall, C. M., Keys, R. D., Stalker, H. T., Murphy, J. P., 1993: Diversity of seed storage protein patterns in wild peanut (Arachis, Fabaceae) species. — Pl. Syst. Evol.186: 1–15.

    Google Scholar 

  • Dhesi, J. S., Stalker, H. T., 1994: Enhancing techniques for studying mitotic peanut chromosomes. — Peanut Sci.21: 92–94.

    Google Scholar 

  • Duke, J. A., 1981: Handbook of legumes of world economic importance. — New York: Plenum Press.

    Google Scholar 

  • Fernandez, A., Krapovickas, A., 1994: Cromosomas y evolucion enArachis (Leguminosae). — Bonplandia8: 187–220.

    Google Scholar 

  • Foster, D. J., Stalker, H. T., Wynne, J. C., Beute, M. K., 1981: Resistance ofArachis hypogaea and wild relatives toCercospora arachidicola Hori. — Oleagineux36: 139–143.

    Google Scholar 

  • Garren, K. H., Jackson, C. R., 1973: Peanut diseases. — InSummerfield, R. J., Bunting, A. H., (Eds): Peanuts-Culture and uses, pp. 429–494. — Stillwater, OK: American Peanut Research Education Association.

    Google Scholar 

  • Gregory, M. P., Gregory, W. C., 1979: Exotic germplasm ofArachis L. interspecific hybrids. — J. Heredity70: 185–193.

    Google Scholar 

  • Gregory, W. C., Gregory, M. P., 1976: GroundnutArachis hypogaea (Leguminosae-Papilionatae). — InSimmonds, N. W., (Ed.): Evolution of crop plants, pp. 151–154. — London: Longman.

    Google Scholar 

  • —, 1980: Structure, variation, evolution, and classification inArachis. — InSummerfield, R. J., Bunting, A. H., (Eds): Advances in legume science, pp. 469–481. — Richmond: Royal Botanic Gardens, Kew.

    Google Scholar 

  • Halward, T. M., Stalker, H. T., LaRue, E. A., Kochert, G. D., 1992: Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). — Pl. Molec. Biol.18: 315–325.

    Google Scholar 

  • Johnson, D. R., Wynne, J. C., Campbell, W. V., 1977: Resistance of wild species ofArachis to the twospotted spider mite,Tetranychus urticae. — Peanut Sci.4: 9–11.

    Google Scholar 

  • Kirti, P. B., Murty, U. R., Bharati, M., Rao, N. G. P., 1982: Chromosome pairing in F1 hybridArachis hypogaea ×A. monticola Krap. etRig. — Theor. Appl. Genet.62: 139–144.

    Google Scholar 

  • Klozova, E., Turkova, V., Smartt, J., Pitterova, K., Svachulova, J., 1983: Immunochemical characterization of seed proteins of some species of the genusArachis L. — Biol. Pl.25: 201–208.

    Google Scholar 

  • Kochert, G., Halward, T., Branch, W. D., Simpson, C. E., 1991: RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. — Theor. Appl. Genet.81: 565–570.

    Google Scholar 

  • —, 1996: RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut,Arachis hypogaea (Leguminosae). — Amer. J. Bot.83: 1282–1291.

    Google Scholar 

  • Krapovickas, A., Gregory, W. C., 1994: Taxonomical del generaArachis (Leguminosae). — Bonplandia8: 1–184.

    Google Scholar 

  • —, 1957: Nuevas aspecies deArachis vinculadas al problema del origen del mani. — Darwiniana11: 431–455.

    Google Scholar 

  • —, 1974: Recuperaction de la fertilidad en un hibgido interspecifico deArachis (Leguminosae). — Bonplandia3: 129–142.

    Google Scholar 

  • Krishna, T. G., Mitra, R., 1988: The probable genome donors toArachis hypogaea L. based on arachin seed storage protein. — Euphytica37: 47–52.

    Google Scholar 

  • Lanham, P. G., Forster, B. P., McNicol, P., Moss, J. P., Powell, W., 1994: Seed storage protein variation inArachis species. — Genome37: 487–496.

    Google Scholar 

  • Lu, J., Pickersgill, B., 1993: Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.-Leguminosae). — Theor. Appl. Genet.85: 550–560.

    Google Scholar 

  • Mukai, Y., 1996: Multicolor in situ hybridization: A new tool for genome analysis. — InJauhar, P. P., (Ed.): Methods of genome analysis in plants, pp. 182–192. — Boca Raton: CRC Press.

    Google Scholar 

  • Paik-Ro, O. G., Smith, R. L., Knauft, D. A., 1992: Restriction fragment length polymorphism evaluation of six peanut species within theArachis section. — Theor. Appl. Genet.84: 201–208.

    Google Scholar 

  • Raman, V. S., Kesavan, P. C., 1962: Studies on a diploid interspecific hybrid inArachis. — Nucleus5: 123–126.

    Google Scholar 

  • Resslar, P. M., 1980: A review of the nomenclature of the genusArachis L. — Euphytica29: 813–817.

    Google Scholar 

  • —, 1979: A cytological study of three diploid species of the genusArachis L. — J. Heredity70: 13–16.

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W., 1984: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. Natl. Acad. Sci. USA81: 8014–8018.

    Google Scholar 

  • Seetharam, A., Nayar, K. M. D., Sreekantaradhya, R., Acher, D. K. T., 1973: Cytological studies on the interspecific hybrid ofArachis hypogaea ×Arachis duranensis. — Cytologia38: 277–280.

    Google Scholar 

  • Singh, A. K., 1986: Utilization of wild relatives in the genetic improvement ofArachis hypogaea L. 8. Synthetic amphidiploids and their importance in interspecific breeding. — Theor. Appl. Genet.72: 433–439.

    Google Scholar 

  • —, 1988: Putative genome donors ofArachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploids. — Pl. Syst. Evol.160: 143–151.

    Google Scholar 

  • —, 1982: Utilization of wild relatives in genetic improvement ofArachis hypogaea L. Part 2: Chromosome complements of species in sectionArachis. — Theor. Appl. Genet.61: 305–314.

    Google Scholar 

  • —, 1991: Phylogenetic relations in sectionArachis based on seed protein profile. — Theor. Appl. Genet.82: 593–597.

    Google Scholar 

  • Singh, K. P., Raina, S. N., Singh, A. K., 1996: Variation in chromosomal DNA associated with the evolution ofArachis species. — Genome39: 890–897.

    Google Scholar 

  • Smartt, J., Stalker, H. T., 1982: Speciation and cytogenetics inArachis. — InPattee, H. E., Young, C. T., (Eds): Peanut science and technology, pp. 21–49. — Yokum, TX: American Peanut Research and Education Society.

    Google Scholar 

  • —, 1978a: The genomes ofArachis hypogaea. 1. Cytogenetic studies of putative genome donors. — Euphytica27: 665–675.

    Google Scholar 

  • —, 1978b: The genomes ofArachis hypogaea. 2. The implications in interspecific breeding. — Euphytica27: 677–680.

    Google Scholar 

  • Stalker, H. T., Dalmacio, R. D., 1981: Chromosomes ofArachis species, sectionArachis. — J. Heredity72: 403–408.

    Google Scholar 

  • —, 1987: Speciation, cytogenetics and utilization ofArachis species. — Advances Agron.41: 1–38.

    Google Scholar 

  • —, 1979: Cytology of interspecific hybrids in sectionArachis of peanuts. — Peanut Sci.6: 110–114.

    Google Scholar 

  • —, 1994: Variation of isozyme patterns amongArachis species. — Theor. Appl. Genet.87: 746–755.

    Google Scholar 

  • Varisai Muhammad, S., 1973: Cytogenetical investigations in the genusArachis L. II. Triploid hybrids and their derivatives. — Madras Agric. J.60: 1414–1427.

    Google Scholar 

  • Wynne, J. C., Halward, T., 1989: Cytogenetics and genetics ofArachis. — Pl. Sci.8: 189–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, S.N., Mukai, Y. Genomic in situ hybridization inArachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Pl Syst Evol 214, 251–262 (1999). https://doi.org/10.1007/BF00985743

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985743

Key words

Navigation