Skip to main content
Log in

δ-Aminolevulinic acid effects on neuronal and glial tumor cell lines

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acute intermittent porphyria (AIP) or precursor syndrome is a well described neuropathic clinical entity with incompletely known etiology. The most prominent biological abnormalities associated with this syndrome are elevations in serum and hepatic δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). We determined the impact of ALA and PBG on human neuroblastoma and glioblastoma tumor cell survival as measured by the MTT assay. ALA proved to be cytotoxic in neuroblastoma cells, while PBG lacked cytotoxic effects. This cytotoxic effect of ALA could be enhanced by deferoxamine and diminished by heme, presumably through modulation of ALA synthesis. In conclusion, ALA excess may prove to be associated with the development of neuropathy in AIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granick, and Vanden Schriek, H. G. 1955. Porphobilinogen and delta-aminolevulinic acid in acute porphyria. Proc Soc Exper Biol & Med, 88:270–273.

    Google Scholar 

  2. Sassa, S., and Kappas, A. 1981. Genetic, metabolic and biochemical aspects of the porphyrias. Adv Hum Genet, 11:121–231.

    Google Scholar 

  3. Sweeney, V. P., Pathak, M. A., Ashbury, A. K. 1970. Acute intermittent porphyria, increased ALA-synthetase activity during an acute attack. Brain 93:369–380.

    Google Scholar 

  4. Percy, V. A., Shanley, B. C. 1977. Porphyrin precursors in blood, urine, and cerebrospinal fluid in acute porphyria. S Afr Med J 52:219–222.

    Google Scholar 

  5. Cavanagh, J. B., Mellick, R. S. 1965. On the nature of the peripheral nerve lesions associated with acute intermittent porphyria. J Neurol Neurosurg Psychiat, 28:320–327.

    Google Scholar 

  6. Stein, J. A., Crul, F. D., Valsamis, M., Tschudy, D. P. 1972. Abnormal iron and water metabolism in acute intermittent porphyria with new morphologic findings. Am J Med 53:784–789.

    Google Scholar 

  7. Tschudy, D. P., Perlroth, M. G., Marver, H. S., Collins, A., Hunter, G. Jr., Rechcigl, M. Jr. 1965. Acute intermittent porphyria. The first 2 “overproduction disease” localized to a specific enzyme. Proc Natl Acad Sci 53:841–847.

    Google Scholar 

  8. Perlroth, M. G., Tschundy, D. P., Marver, H. S., Berard, C. W., Ziegel, R. F., Rechcigl, M., Collins, A. 1966. Acute intermittent porphyria: New morphologic and biochemical findings. Am J Med, 41:149–162.

    Google Scholar 

  9. Bloomer, J. R., Bonkovsky, H. L. 1989. The porphyrias. Dis Mon 35:1–53.

    Google Scholar 

  10. Strand, L. J., Felsher, B. F., Redeker, A. G., and Marver, H. S. 1970. Heme biosynthesis in intermittent acute porphyria: Decreased hepatic conversion of porphobilinogen to porphyrins and increased delta-aminolevulinic acid synthetase activity. Proc Natl Acad Sci, USA 67:1315–1320.

    Google Scholar 

  11. Bonkowsky H. L., Tschudy, D. P., Weinbach F. C. 1975. Porphyrin synthesis and mitochondrial respiration in acute intermittent porphyria: Studies using cultured human fibroblasts. J Lab Clin Med, 85:93–102.

    Google Scholar 

  12. Magnussen, C. R., Levine, J. B., Doherty, J. M., Cheesman, J. O., Tschudy, D. P. 1974. Red cell enzyme method for the diagnosis of acute intermittent porphyria. Blood, 44:857–868.

    Google Scholar 

  13. Nunn, A. V. W., Gardner, L. C., Cox, T. M. 1987. Molecular forms of porphobilinogen deaminase in acute intermittent porphyria. A study by western immunoblotting. Q J Med, 64:589–599.

    Google Scholar 

  14. Lannfelt, L., Wetterberg, L., Lilius, L., Thunell, S., Gellerfors, P. 1989. ELISA for measuring porphobilinogen deaminase in human erythrocytes. Clin Chem Acta, 183:227–237.

    Google Scholar 

  15. Russell, V. A., Lamm, M. C. L., Taljarrd, J. J. F. 1983. Inhibition of Na+, K+-ATPase activity by δ-aminolevulinic acid. Neurochem Research, Vol. 8, 11:1407–1415.

    Google Scholar 

  16. Russell, V. A., Lamm, M. C. L., Taljarrd, J. J. F. 1982. Effects of δ-aminolaevulinic acid, porphobilinogen and structurally related amino acids on 2-deoxyglucose uptake in cultured neurons. Neurochem Research, Vol. 7, 8:1009–1022.

    Google Scholar 

  17. Percy, V. A., Lamm, M. L., Taljaard, J. J. F. 1981. δ-aminolaevulinic acid uptake, toxicity, and effect on [14C] δ-aminobutyric acid uptake into neurons and glia in culture. J Neurochem 36:69–76.

    Google Scholar 

  18. Müller, W. E., and Snyder, S. D. 1977. δ-aminolaevulinic acid: Influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann. Neurol 2:340–342.

    Google Scholar 

  19. Brennan, M. J. W., Cantrill, R. C. 1979. δ-aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 280:514–515.

    Google Scholar 

  20. Rubinstein, L. V., Shoemaker, R. H., Paull, K. D., Simon, R. M., Tosini, S., Skehan, P., Scudiero, D. A., Monks, A., Boyd, M. R. 1990. Comparison of in vitro anticancer drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82:1113–1118.

    Google Scholar 

  21. Wilson, J. K., Sargent, J. M., Elgie, A. W., Hill, J. G., Taylor, C. G. 1990. A feasibility study of the MTT assay for chemosensitivity testsing in ovarian malignancy. Br J Cancer 62:189–194.

    Google Scholar 

  22. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., Mitchell, J. B. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res 47:936–942.

    Google Scholar 

  23. Bonkowsky, H. L., Tschudy, D. P., Collins, A., Doherty, J., Bossenmaier, I., Cardinal, R., Watson, C. J. 1971. Repression of the overproduction of porphyrin precursors in acute intermittent porphyria by intravenous infusion of hematin. Proc Natl Acad Sci, 68:2725–2729.

    Google Scholar 

  24. Herrick, A. L., McColl, K. E. L., Morre, M. R., Cook, A., Goldberg, A. 1989. Controlled trial of Haem arginate in acute hepatic porphyria. Lancet 1:1295–1297.

    Google Scholar 

  25. Montiero, H. P., Bechara, E. J., Adalla, D. S., 1991. Free radicals involvement in neurological porphyrias and lead poisoning. Mol Cell Biochem, Apr 24; 103 (1):73–83.

    Google Scholar 

  26. Hershko, C., Link, G., and Pinson, A. 1992. Thiolic sarcolemmal proteins are a primary target of iron toxicity in cultured rat heart cells. Proc. ASH, December 4–8, Anaheim, CA, Abstr. 1352, p 340a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helson, L., Braverman, S. & Mangiardi, J. δ-Aminolevulinic acid effects on neuronal and glial tumor cell lines. Neurochem Res 18, 1255–1258 (1993). https://doi.org/10.1007/BF00975044

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00975044

Key Words

Navigation