Skip to main content
Log in

Complexation of the zinc(II) ion with 2,2′-bipyridine and 1,10-phenanthroline in 4-methylpyridine and solvation structure of the manganese(II), cobalt(II), nickel(II), and zinc(II) ions in 4-methylpyridine and 3-methylpyridine

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Complexation of the zinc(II) ion with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) has been calorimetrically studied in 4-methylpyridine (4Me-py) containing 0.1 mol dm−3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnL]2+, [ZnL2]2+, and [ZnL3]2+ (L=bpy, phen), and their formation constants, reaction enthalpies and entropies were determined. Our EXAFS (extended X-ray absorption fine structure) measurements showed that the solvation structure of the manganese(II), cobalt(II), and nickel(II) ions is six-coordinate octahedral in 4Me-py and 3-methylpyridine (3Me-py), while that of the zinc(II) ion is four-coordinate tetrahedral in 4Me-py. Since [ZnL3]2+ is expected to have an octahedral structure, a tetrahedral-to-octahedral structural change should take place at a certain step of complexation. The thermodynamic parameters, especially reaction entropies, indicate that the structural change occurs at the formation of [Zn(bpy)2]2+ and [Zn(phen)]2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahrland,Pure Appl. Chem. 51, 2019 (1979).

    Google Scholar 

  2. S. Ahrland,Pure Appl. Chem. 54, 1451 (1982).

    Google Scholar 

  3. S. Ahrland and S. Ishiguro,Inorg. Chim. Acta 142, 277 (1988).

    Google Scholar 

  4. S. Ahrland, S. Ishiguro, and I. Persson,Acta Chem. Scand. Ser. A 40, 418 (1986).

    Google Scholar 

  5. S. Ahrland and S. Balzano,Inorg. Chim. Acta 142, 285 (1988).

    Google Scholar 

  6. M. Kurihara, K. Ozutsumi, and T. Kawashima, (to be published).

  7. M. Kurihara, K. Ozutsumi, and T. Kawashima,J. Chem. Soc. Dalton Trans. 3267 (1994).

  8. V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum, New York, 1978).

    Google Scholar 

  9. Y. Abe, K. Ozutsumi, and S. Ishiguro,J. Chem. Soc. Faraday Trans. 1 85 3747 (1989).

    Google Scholar 

  10. Y. Abe and S. Ishiguro,J. Solution Chem. 20, 793 (1991).

    Google Scholar 

  11. S. Ishiguro, K. Ozutsumi, and H. Ohtaki,J. Chem. Soc. Faraday Trans. 1 84, 2409 (1988).

    Google Scholar 

  12. S. Ishiguro, K. Ozutsumi, and H. Ohtaki,Bull. Chem. Soc. Jpn. 60, 531 (1987).

    Google Scholar 

  13. K. Ozutsumi, M. Koide, H. Suzuki, and S. Ishiguro,J. Phys. Chem. 97, 500 (1993).

    Google Scholar 

  14. K. Ozutsumi, Y. Abe, R. Takahashi, and S. Ishiguro,J. Phys. Chem. 98, 9894 (1994).

    Google Scholar 

  15. H. Suzuki and S. Ishiguro,Netsu Sokutei 15, 152 (1988).

    Google Scholar 

  16. H. Ohtaki, T. Yamaguchi, and M. Maeda,Bull. Chem. Soc. Jpn. 49, 701 (1976).

    Google Scholar 

  17. M. Nomura, A. Koyama, and M. Sakurai,KEK Report 91-1 (National Laboratory for High Energy Physics, Tsukuba, Japan, 1991).

    Google Scholar 

  18. H. Suzuki and S. Ishiguro,Inorg. Chem. 31, 4178 (1992).

    Google Scholar 

  19. D. W. Marquardt,J. Soc. Ind. Appl. Math 11, 431 (1963).

    Google Scholar 

  20. F. J. Harris,Proc. IEEE 66, 51 (1978).

    Google Scholar 

  21. D. E. Sayers, E. A. Stern, and F. W. Lytle,Phys. Rev. Lett. 27, 1204 (1971).

    Google Scholar 

  22. E. A. Stern,Phys. Rev. B10, 3027 (1974).

    Google Scholar 

  23. E. A. Stern, D. E. Sayers, and F. W. Lytle,Phys. Rev. B11, 4836 (1975).

    Google Scholar 

  24. B. Lengeler and P. Eisenberger,Phys. Rev. B21, 4507 (1980).

    Google Scholar 

  25. B.-K. Teo and P. A. Lee,J. Am. Chem. Soc. 101, 2815 (1979).

    Google Scholar 

  26. S. Ishiguro, M. Miyauchi, and K. Ozutsumi,J. Chem. Soc. Dalton Trans. 2035 (1990).

  27. T. Tamada, H. Suzuki, and S. Ishiguro, Abstracts of 42nd Symp. on Coordination Chemistry of Japan, (Nara, Japan, 1992) p. 36.

  28. W. A. E. McBryde,A Critical Review of Equilibrium Data for Proton- and Metal Complexes of 1,10-Phenanthroline, 2,2′-Bipyridyl and Related Compounds, IUPAC Chemical Data Series, No. 17 (Pergamon, Oxford, 1978).

    Google Scholar 

  29. R. J. Doedens and L. F. Dahl,J. Am. Chem. Soc. 88, 4847 (1966).

    Google Scholar 

  30. G. Johansson and M. Sandström,Acta Chem. Scand. Ser. A 32, 109 (1978).

    Google Scholar 

  31. R. Åkesson, M. Sandström, C. Stålhandske, and I. Persson,Acta Chem. Scand. 45, 165 (1991).

    Google Scholar 

  32. R. D. Shannon,Acta Crystallogr. Sect. A 32, 751 (1976).

    Google Scholar 

  33. T. Yamaguchi and H. Ohtaki,Bull. Chem. Soc. Jpn. 51, 3227 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, M., Ozutsumi, K. & Kawashima, T. Complexation of the zinc(II) ion with 2,2′-bipyridine and 1,10-phenanthroline in 4-methylpyridine and solvation structure of the manganese(II), cobalt(II), nickel(II), and zinc(II) ions in 4-methylpyridine and 3-methylpyridine. J Solution Chem 24, 719–734 (1995). https://doi.org/10.1007/BF00973238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973238

Key Words

Navigation