Skip to main content
Log in

Cyclic AMP-stimulated protein kinase activity in rabbit peripheral myelin

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cyclic AMP-sensitive protein kinase activity has been found in suspensions of purified rabbit peripheral myelin. The enzyme phosphorylated the P0, “Y”, X, P1, and P2 myelin proteins. Kinase activity, which was maximal at physiological pH, 2.5 mM Mg2+, and 2 νM cAMP, was stimulated three-fold over basal levels by cyclic AMP. Addition of calcium or EGTA had no effect on the enzyme activity in the presence or absence of cyclic AMP. Cyclic GMP also did not stimulated endogenous or exogenous protein phosphorylation. Theophylline, an inhibitor of 3′,5′-cyclic nucleotide phosphodiesterase activity, increased protein kinase activity in the presence of cyclic AMP. These data show that PNS myelin proteins can be phosphorylated in situ by a protein kinase system whose activity is stimulated selectively by cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter, U., Lohmann, S. M., Sieghart, W., andGreengard, P. 1979. Identification of the cyclic AMP-dependent protein kinase responsible for endogenous phosphorylation of substrate proteins in synaptic membrane fractions from rat brain. J. Biol. Chem. 254:12235–12239.

    Google Scholar 

  2. Rubin, C. F., Erlichman, J., andRosen, O. M. 1972. Cyclic adenosine 3′,5′-monophosphate-dependent protein kinases of human erythrocyte membrane. J. Biol. Chem. 247:6135–6139.

    Google Scholar 

  3. Tao, M., Conway R., andCheeta, S. 1980. Purification and characterization of a membrane-bound protein kinase from human erythrocytes. J. Biol. Chem. 255:2563–2568.

    Google Scholar 

  4. Miyamoto, E. 1975. Protein kinases in myelin of rat brain: solubilization and characterization. J. Neurochem. 24:503–512.

    Google Scholar 

  5. Miyamoto, E., Miyazaki, K., Hirose, R., andKashiba, A. 1978. Multiple forms of protein kinases in myelin and microsomal fractions of bovine brain. J. Neurochem. 31:269–275.

    Google Scholar 

  6. Aguayo, A. J., Charron, L., andBray, G. M. 1976. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and autoradiographic study. J. Neurocytol. 5:565–573.

    Google Scholar 

  7. Weinberg, H. J., andSpencer P. S. 1976. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 113:363–378.

    Google Scholar 

  8. Politis, M. J., Ederle, K., andSpencer, P. S. 1982. Studies on the control of myelinogenesis. IV. Neuronal regulation of Schwann cell protein synthesis during axon regeneration and myelination. J. Neurosci. 2:1252–1266.

    Google Scholar 

  9. Spencer, P. S. andWeinberg, H. J. 1978. Axonal specification of Schwann cell expression and myelination,in Pages 389–405 (Waxman, S., (ed.), The Physiology and Pathobiology of Axons, Raven Press, New York.

    Google Scholar 

  10. Norton, W. T., andPoduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–759.

    Google Scholar 

  11. Greenfield, S., Norton, W. T., andMorell, P. 1971. Quaking mouse: isolation and characterization of myelin proteins. J. Neurochem. 18:2119–2128.

    Google Scholar 

  12. Brown, M. J., Pleasure, D. E., andAsbury, A. K. 1976. Microdissection of peripheral nerve: collagen and lipid distribution with morphological correlation. J. Neurol. Sci. 29:361–369.

    Google Scholar 

  13. de Lange, R. J., Kemp, R. J., Riley, W. D., Cooper, R. A., andKrebs, E. G. 1968. Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′,5′-monophosphate. J. Biol. Chem. 243:2200–2208.

    Google Scholar 

  14. Lowry, O. J., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  15. Greenfield, S., Brostoff, S., Eylar, E. H., andMorell, P. 1973. Protein composition of myelin of the peripheral nervous system. J. Neurochem. 20:1207–1217.

    Google Scholar 

  16. Laemmli, U. K. 1970. Analysis of T4 phage proteins by gel electrophoresis. Nature 227:680–684.

    Google Scholar 

  17. Inouye, M. 1971. Internal standards for molecular weight determinations of proteins by polyacrylamide gel electrophoresis. J. Biol. Chem. 246:4834–4838.

    Google Scholar 

  18. Butcher, R. W., andSutherland, E. W. 1962. Adenosine 3′, 5′-phosphate in biological materials. Pt. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine. J. Biol. Chem. 237:1241–1250.

    Google Scholar 

  19. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., andEylar, E. H. (1980) The P0 glycoprotein of peripheral nerve myelin. Can. J. Biochem. 58:913–921.

    Google Scholar 

  20. Cammer, W., Sirota, S. R., andNorton, W. T. 1980. The effect of reducing agents on the apparent molecular weight of the myelin P0 protein and the possible identity of the P0 and “Y” protein. J. Neurochem. 34:404–409.

    Google Scholar 

  21. Cammer, W., Brosnan C. F., Bloom, B. R., andNorton, W. T. 1981. Degradation of the P0, P1, and P2 proteins in peripheral nervous system myelin by plasmin: Implications regarding the role of macrophages in demyelinating diseases. J. Neurochem. 36:1506–1514.

    Google Scholar 

  22. Singh, M. andSpritz, N. 1976. Protein kinases associated with peripheral nerve myelin. I. Phosphorylation of endogenous myelin proteins and exogenous substrates. Biochem. Biophys. Acta 448:325–338.

    Google Scholar 

  23. Petrali, E. H., andSulakhe, P. V. 1979. Calcium ion-stimulated endogenous protein kinase-catalyzed phosphorylation of peripheral nerve myelin proteins. Canad. J. Physiol. Pharmacol. 57:1200–1204.

    Google Scholar 

  24. Sulakhe, P. V., Petrali, E. H., Thiessen, B. J., andDavis, E. R. (1980) Calcium ion-stimulated phosphorylation of myelin proteins. Biochem. J. 186:469–473.

    Google Scholar 

  25. Maeno, H., andGreengard, P. 1972. Phosphoprotein phosphatases from rat cerebral cortex. J. Biol. Chem. 247:3269–3279.

    Google Scholar 

  26. McNamara, J. O. andAppel, S. H. 1977. Myelin basic protein phosphatase activity in rat brain. J. Neurochem. 29:27–35.

    Google Scholar 

  27. Yourist, J. E., Ahmad, F., andBrady, A. H. 1978. Solubilization and partial characterization of a phosphoprotein phosphatase from human myelin. Biochem. Biophys. Acta 522:452–464.

    Google Scholar 

  28. Corbin, J. D., Keely, S. L., andPark, C. R. 1975. The distribution and dissociation of cyclic AMP-dependent protein kinase in adipose, cardiac and other tissues. J. Biol. Chem. 250:218–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabrenetzky, V., Krygier-Brévart, V. & Spencer, P.S. Cyclic AMP-stimulated protein kinase activity in rabbit peripheral myelin. Neurochem Res 9, 121–132 (1984). https://doi.org/10.1007/BF00967664

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967664

Keywords

Navigation