Skip to main content
Log in

Effects of amphipathic drugs onl-[3H]glutamate binding to synaptic membranes and the purified binding protein

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Four amphipathic molecules with known local anesthetic activity, dibucaine, tetracaine, chlorpomazine, and quinacrine, inhibited the binding ofl-[3H]glutamic acid to rat brain synaptic plasma membranes and to the purified glutamate binding protein. Neither haloperidol nor diphenylhydantoin had significant inhibitory effects on the glutamate binding activity of the membranes or of the purified protein. The amphipathic drugs apparently inhibitedl-[3H]glutamate binding to synaptic membranes by a mixed type of inhibition. The inhibitory activity of quinacrine on glutamate binding to the synaptic membranes was greater in a low ionic strength, Ca2+-free buffer medium, than in a physiologic medium (Krebs-Henseleit buffer). Removal of Ca2+ from the Krebs solution enhanced quinacrine's inhibition of glutamate binding. Quinacrine up to 1 mM concentration did not inhibit the high affinity Na+-dependentl-glutamate transport in these membrane preparations. The importance of Ca2+ in the expression of quinacrine's effects on the glutamate binding activity of synaptic membranes and the observed tetracaine and chlorpromazine-induced increases in the transition temperature for the glutamate binding process of these membranes, were indicative of an interaction of the local anesthetics with the lipid environment of the glutamate binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seeman, P. 1972. The membrane action of anesthetics and tranquilizers. Pharmacol. Rev. 24:583–655.

    Google Scholar 

  2. Seeman, P. 1966. Membrane stabilization by drugs: tranquilizers, steroids, and anesthetics. Int. Rev. Neurobiol. 9:145–221.

    Google Scholar 

  3. Wang, H. H., Earnest, J., andChan, D. 1980. Interaction of local anesthetics with biological and model membranes. Pages 483–487,in Fink, B. R. (ed.), Molecular Mechanisms of Anesthesia, Raven Press, New York.

    Google Scholar 

  4. Narahashi, T., Frazier, D. T., andYamada, M. 1970. The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds. J. Pharmacol. Exp. Ther. 171:32–44.

    Google Scholar 

  5. Narahashi, T., Frazier, D. T., andMoore, J. W. 1972. Comparison of tertiary and quaternary amine local anesthetics in their ability to depress membrane ionic conductances. J. Neurobiol. 3:267–276.

    Google Scholar 

  6. Skou, J. C. 1954. Local anesthetics. I. The blocking potencies of some local anesthetics and of butyl alcohol determined on peripheral nerves. Acta Pharmacol. Toxicol. 10:281–291.

    Google Scholar 

  7. Schwartz, W., Palade, P. T., andHille, B. 1977. Local anesthetics: Effect of pH on use-dependent block of sodium channels on frog muscles. Biophys. J. 20:343–368.

    Google Scholar 

  8. Grühagen, H-H., andChangeux, J-P. 1976. Studies on the electrogenic action of acetylcholine with torpedo marmorata electric organ. J. Mol. Biol. 106:497–516.

    Google Scholar 

  9. Adams, P. R., andFeltz, A. 1977. Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane. Nature 269:609–611.

    Google Scholar 

  10. Adams, P. R., andBanks, F. W. 1980. Actions of anesthetics and anticonvulsants on synaptic channels. Pages 95–109,in Fink, B. R. (ed.), Molecular Mechanisms of Anesthesia, Raven Press, New York.

    Google Scholar 

  11. Flicker, C., andGeyer, M. A. 1982. Behavior during hippocompal microinfusions. III. Lidocaine versus picrotoxin. Brain Res. Rev. 4:129–136.

    Google Scholar 

  12. Herz, A., andZieglgansberger, W. 1968. The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int. J. Neuropharmacol. 7:221–230.

    Google Scholar 

  13. Stritchartz, G. R. 1976. Molecular mechanisms of nerve block by local anesthetics. Anesthesiology 45:421–441.

    Google Scholar 

  14. Feinstein, M. B. 1964. Reaction of local anesthetics with phospholipids. J. Gen. Physiol. 48:357–374.

    Google Scholar 

  15. Weber, M., andChangeux, J-P. 1974. Binding of naja nigricollis [3H] α-toxin to membrane fragments from electrophorus and torpedo electric organs. Mol. Pharmacol. 10:35–40.

    Google Scholar 

  16. Heidman, T., andChangeux, J-P. 1978. Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Annu. Rev. Biochem. 47:317–357.

    Google Scholar 

  17. Blanchard, S. G., Elliot, J., andRaftery, M. A. 1979. Interaction of local anesthetics with torpedo californica membrane-bound acetylcholine receptor. Biochemistry 18:5880–5885.

    Google Scholar 

  18. Evans, R. H., Francis, A. A., andWatkins, J. C. 1977. Differential antagonism by chlorpromazine and diazepam of frog motoneurone depolarization induced by glutamaterelated amino acids. Europ. J. Pharmacol. 44:325–330.

    Google Scholar 

  19. Foster, A. C., andRoberts, P. J. 1978. High affinityl-[3H]glutamate binding to postsynaptic receptor sites on rat cerebellar membranes. J. Neurochem. 31:1467–1477.

    Google Scholar 

  20. Michaelis, E. K., Michaelis, M. L., Chang, H. H., Grubbs, R. D., andKuonen, D. R. 1981. Molecular characteristics of glutamate receptors in the mammalian brain. Molec. Cell. Biochim. 38:163–179.

    Google Scholar 

  21. Baudry, M., andLynch, G. 1981. Characterization of two [3H]glutamate binding sites in rat hippocampal membranes. J. Neurochem. 36:811–820.

    Google Scholar 

  22. Foster, A. C., Mena, E. E., Fagg, G. E., andCotman, C. W. 1981. Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain. J. Neuroscience 1:620–625.

    Google Scholar 

  23. Honoré, T., Lowridsen, J., andKrogsgaard-Larsen, P. 1981. Ibotenic acid analogues as inhibitors of [3H]glutamic acid binding to cerebellar membranes. J. Neurochem. 36:1302–1304.

    Google Scholar 

  24. Bizierre, K., Thompson, H., andCoyle, J. T. 1980. Characterization of specific highaffinity binding sites forl-[3H]glutamic acid in rat brain membranes. Brain Res. 183:421–423.

    Google Scholar 

  25. Chang, H. H., andMichaelis, E. K. 1980. Effects ofl-glutamic acid on synaptosomal and synaptic membrane Na+ fluxes and (Na+−K+)-ATPase. J. Biol. Chem. 255:2411–2417.

    Google Scholar 

  26. Kanner, B. I. 1978. Active transport of γ-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17:1207–1211.

    Google Scholar 

  27. Shariff, N. A., andRoberts, P. J. 1980. Problems associated with the binding ofl-glutamic acid to synaptic membranes: Methodological aspects. J. Neurochem. 34:779–784.

    Google Scholar 

  28. Michaelis, E. K., Michaelis, M. L., andGrubbs, R. D. 1980. Distinguishing characteristics between glutamate and kainic acid binding sites in brain synaptic membranes. FEBS Lett. 118:55–57.

    Google Scholar 

  29. Michaelis, E. K. 1975. Partial purification and characterization of a glutamate-binding glycoprotein from rat brain. Biochem. Biophys. Res. Communic. 65:1004–1012.

    Google Scholar 

  30. Michaelis, E. K., Michaelis, M. L., Stormann, T. M., Chittenden, W. L., andGrubbs, R. D. 1983. Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J. Neurochem. 40:1742–1753.

    Google Scholar 

  31. Michaelis, E. K. 1979. The glutamate receptor-like protein of brain synaptic membranes is a metalloprotein. Biochem. Biophys. Res. Communic. 87:106–113.

    Google Scholar 

  32. Kanner, B. I., andSharon, I. 1978. Active transport ofl-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17:3949–3953.

    Google Scholar 

  33. Michaelis, E. K., Belieu, R. M., Grubbs, R. D., Michaelis, M. L., andChang, H. H. 1982. Differential effects of metal ligands on synaptic membrane glutamate binding and uptake systems. Neurochem. Res. 7:417–430.

    Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  35. Cools, A. R., andVan Rossum, J. M. 1976. Excitation-mediating and inhibition-mediating dopamine-receptors. Psychopharmacol. (Berl.) 45:243–254.

    Google Scholar 

  36. Woodbury, D. M. 1955. Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J. Pharmacol. Exp. Therap. 115:74–95.

    Google Scholar 

  37. Ohnishi, S., andIto, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes. Biochemistry 13:881–887.

    Google Scholar 

  38. Cullis, P. R., Hornby, A. P., andHope, M. J. 1980. Effects of anesthetics on lipid polymorphism. Pages 397–403,in Fink, B. R. (ed.), Molecular Mechanisms of Anesthesia, Raven Press, New York.

    Google Scholar 

  39. Papahadjopoulos, D. 1970. Phospholipid model membranes. III. Antagonistic effects of Ca2+ and local anesthetics on the permeability of phosphatidylserine vesicles. Biochim. Biophys. Acta 211:467–477.

    Google Scholar 

  40. Seeman, P., Kwant, W. O., Goldberg, M., andChau-Wong, M. 1971. The effects of ethanol and chlopromazine on the passive membrane permeability to Na+. Biochim. Biophys. Acta 241:349–355.

    Google Scholar 

  41. Dipple, I., Gordon, L. M., andHouslay, M. D. 1982. The activity of 5′-nucleotidase in liver plasma membranes is affected by the increase in bilayer fluidity achieved by anionic drugs but not by cationic drugs. J. Biol. Chem. 257:1811–1815.

    Google Scholar 

  42. Michaelis, E. K., Zimbrick, J. D., McFaul, J. A., Lampe, R. A., andMichaelis, M. L. 1980. Ethanol effects on synaptic glutamate receptors and on liposomal membrane structure. Pharmacol. Biochem. Behav. 13, Suppl. 1, 197–202.

    Google Scholar 

  43. Low, P. S., Lloyd, D. H., Stein, T. M. andRogers, J. A. 1979. Calcium displacement by local anesthetics. J. Biol. Chem. 254:1419–1425.

    Google Scholar 

  44. Volpi, M., Sha'afi, R. I., Epstein, P. M., Andre-Nyak, D. M., andFeinstein, M. B. 1981. Local anesthetics, nepacrine, and propranolol are antagonists of calmodulin. Proc. Natl. Acad. Sci. (USA) 78:795–799.

    Google Scholar 

  45. Mueller, D. M., andLee, C. P. 1982. Inhibition of the energy-linked fluorescence response of quinacrine with local anesthetics. FEBS Lett. 137:45–48.

    Google Scholar 

  46. Leterrier, F., Rieger, F., andMariaud, J. F. 1973. Comparative study of the action of phenothiazine and para-fluorobutyrophenone derivatives on rat brain membranes using the spin label technique. J. Pharmacol. Exper. Therap. 186:609–615.

    Google Scholar 

  47. Takishima, K., Shimizu, H., Setaka, M., andKwan, T. 1980. A spin-label study of the effects of drugs on calcium release from isolated sacroplasmic reticulum vesicles. J. Biochem. 87:305–312.

    Google Scholar 

  48. Chang, H. H., andMichaelis, E. K. 1982.l-Glutamate effects on electrical potentials of synaptic plasma membrane vesicles. Biochim. Biophys. Acta 688:285–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, E.K., Magruder, C.D., Lampe, R.A. et al. Effects of amphipathic drugs onl-[3H]glutamate binding to synaptic membranes and the purified binding protein. Neurochem Res 9, 29–44 (1984). https://doi.org/10.1007/BF00967657

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967657

Keywords

Navigation