Skip to main content
Log in

The stimulus-evoked release of glutamate and GABA from brain subregions following transient forebrain ischemia in the rat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirino, T. 1982. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Research 239:57–69.

    Google Scholar 

  2. Pulsinelli, W. A., Levy, D. E., and Duffy, T. E. 1982. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann. Neurol. 11:499–509.

    Google Scholar 

  3. Smith, M. L., Auer, R. N., and Siesjö, B. K. 1984. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. (Berl.) 64:319–332.

    Google Scholar 

  4. Benveniste, H., Jorgensen, M. B., Sandberg, M., Christensen, T., Hagberg, H., and Diemer, N. H. 1989. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J. Cereb. Blood flow Metab. 9:629–639.

    Google Scholar 

  5. Jorgensen, M. B., Johansen, F. F., and Diemer, N. H. 1987. Removal of the entorhinal cortex protects hippocampal CA1 neurons from ischemic damage. Acta Neuropathol. (Berl.) 73:189–194.

    Google Scholar 

  6. Globus, M. Y.-T., Ginsberg, M. D., and Busto, R. 1991. Excitotoxic index: A biochemical marker of selective vulnerability. Neurosci. Lett. 127:39–42.

    Google Scholar 

  7. Sheardown, M. J., Nielsen, E. O., Anker, J. H., Jacobsen, P., and Honoré, T. 1990. 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 247:571–574.

    Google Scholar 

  8. Siesjö, B. K., and Bengtsson, F. 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia and spereading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.

    Google Scholar 

  9. Le Peillet, E., Arvin, B., Moncada, C., and Meldrum, B. S. 1992. The non-NMDA antagonists, NBQX and GYKI 52466, protect against cortical and striatal cell loss following transient global ischemia in the rat. Brain Research 571:115–120.

    Google Scholar 

  10. Globus, M. Y.-T., Ginsberg, M. D., Dietrich, W. D., Busto, R., and Scheinberg, P. 1987. Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Lett. 80:251–256.

    Google Scholar 

  11. Wieloch, T., Miyauchi, T., and Lindvall, O. 1990. Neuronal damage in the striatum following forebrain ischemia: Lack of effect of selective lesions of mesostriatal dopamine neurons. Exp. Brain Research 83:159–163.

    Google Scholar 

  12. Baker, A. J., Zornow, M. H., Scheller, M. S., Yaksh, T. L., Skilling, S. R., Smullin, D. H., Larsen, A. A., and Kuczenski, R. 1991. Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J. Neurochem. 57:1370–1379.

    Google Scholar 

  13. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    Google Scholar 

  14. Brannan, T. S., Weinberger, J., Knott, P., Taff, I., Kaufmann, H., Togasaki, D., and Nieves-Rosa, J. 1987. Direct evidence of massive striatal dopamine release in gerbils with unilateral strokes. Stroke 18:108–110.

    Google Scholar 

  15. Globus, M. Y.-T., Busto, R., Martinez, E., Valdes, I., Dietrich, W. D., and Ginsberg, M. D. 1991. Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and non-vulnerable brain regions in the rat. J. Neurochem. 57:470–478.

    Google Scholar 

  16. Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobson, I., and Hamberger, A. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular components. J. Cereb. Blood Flow Metab. 5:413–419.

    Google Scholar 

  17. Mitani, A., Andou, Y., and Kataoka, K. 1992. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 48:307–313.

    Google Scholar 

  18. Buzsaki, G., Freund, T. F., Bayardo, F., and Somogyi, P. 1989. Ischemia-induced changes in the electrical activity of the hippocampus. Exp. Brain Research 78:268–278.

    Google Scholar 

  19. Hossmann, K.-A., Sakaki, S., and Kimoto, K. 1976. Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischemia. Stroke 7:301–305.

    Google Scholar 

  20. Pulsinelli, W. A., Brierley, J. B., and Plum, F. 1982. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 11:491–498.

    Google Scholar 

  21. Pulsinelli, W. A., and Duffy, T. E. 1983. Regional energy balance in rat brain after transient forebrain ischemia. J. Neurochem. 40:1500–1503.

    Google Scholar 

  22. Sims, N. R., Bowen, D. M., and Davison, A. N. 1981. [14C]Acetylcholine synthesis and [14C]carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem. J. 196:867–876.

    Google Scholar 

  23. Donzanti, B. A., and Yamamoto, B. K. 1988. An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci. 43:913–922.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J. Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  25. Nicholls, D. G. 1989. Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.

    Google Scholar 

  26. Nicholls, D. G., Sihra, T. S., and Sanchez-Prieto, J. 1987. Calcium-dependent and-independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49:50–57.

    Google Scholar 

  27. Sims, N. R. 1992. Energy metabolism and selective neuronal vulnerability following global cerebral ischemia. Neurochem. Research 17:923–931.

    Google Scholar 

  28. Sims, N. R., and Pulsinelli, W. A. 1987. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 49:1367–1374.

    Google Scholar 

  29. Sims, N. R. 1991. Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 56:1836–1844.

    Google Scholar 

  30. Zaidan, E., and Sims, N. R. 1993. Selective reductions in the activity of the pyruvate dehydrogenase complex in mitochondria isolated from brain subregions following forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 13:98–104.

    Google Scholar 

  31. Dienel, G. A. 1984. Regional accumulation of calcium in postischemic rat brain. J. Neurochem. 43:913–925.

    Google Scholar 

  32. Suzuki, R., Yamaguchi, T., Li, C.-L., and Klatzo, I. 1983. The effects of 5-minute ischemia in Mongolian gerbils. II Changes in spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol. 60:217–222.

    Google Scholar 

  33. Armstrong, D. R., Neill, K. H., Crain, B. J., and Nadler, J. V. 1989. Absence of electrographic seizures after transient forebrain ischemia in the Mongolian gerbil. Brain Research 476:174–178.

    Google Scholar 

  34. Zaidan, E., and Sims, N. R. 1990. Alterations in the production of14CO2 and [14C]acetylcholine from [U-14C]glucose in brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 55:1882–1889.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, N.R. The stimulus-evoked release of glutamate and GABA from brain subregions following transient forebrain ischemia in the rat. Neurochem Res 18, 1073–1079 (1993). https://doi.org/10.1007/BF00966687

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966687

Key Words

Navigation