Skip to main content
Log in

Relative halothane accumulation in brain subcellular membranes in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The accumulation of halothane in brain homogenates was compared with halothane accumulation in brain during inhalation at anesthetic and subanesthetic levels. Anesthesia is achieved at a tissue concentration well below the halothane solubility in brain tissue. Analysis of halothane in the particulate solids of brain homogenate and in purified subcellular membranes indicates that a membrane constituent (presumably the lipids) acts as an ideal solvent in which halothane is fully miscible. Therefore, membranes offer a local microenvironment in which halothane accumulation deviates from Henry's law. Specifically, we observe that even slight increases of halothane in a saline medium result in a relatively large increase in the concentration of halothane in subcellular membranes suspended in the medium, eventually leading to solvation of the membrane in halothane. This observation offers a ready explanation for the high degree of positive correlation between MAC and lipid solubility and the small difference between anesthetic and lethal concentrations of halothane during inhalation. The rate of halothane increase in myelin exceeded the rate in other brain subcellular membranes, indicating that a major site of halothane localization is within this subcellular membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan W. A. M., andRaventos, J. 1959. The Pharmacokinetics of Halothane (Fluothane) Anaesthesia. Brit. J. Anaesth. 31:303–315.

    Google Scholar 

  2. Divakaran, P., Joiner, F., Rigor, B. M., andWiggins, R. C. 1980. Accumulation and Persistence of Halothane in Adult and Fetal Rat Brain as a Result of Subanesthetic Exposure. J. Neurochem. 34:1543–1546.

    Google Scholar 

  3. Divakaran, P., Rigor, B. M., andWiggins, R. C. 1981. Halothane Accumulation in Rat Brain and Liver. Neurochem. Res. 6:77–85.

    Google Scholar 

  4. Larson, Jr. C. P., Eger, II, E. I. andSeveringhaus, J. W. 1962. The Solubility of Halothane in Blood and Tissue Homogenates. Anesthesiology, 23:349–355.

    Google Scholar 

  5. Eger, II, E. I., andLarson, Jr. C.P. 1964. Anaesthetic Solubility in Blood Tissues: Values and Significance. Brit. J. Anaesth. 36:140–149.

    Google Scholar 

  6. Eichberg, J., Whittaker, V. P., andDawson, R. M. C. 1964. Distribution of Lipids in Subcellular Particles of Guinea-Pig Brain. Biochem. J. 92:91–100.

    Google Scholar 

  7. Cohen, E. N., andHood, N. 1969. Application of Low-Temperature Autoradiography to Studies of the Uptake and Metabolism of Volatile Anesthetics in the Mouse. Anesthesiology 31:553–559.

    Google Scholar 

  8. Cohen, E. N., Chow, K. L., andMathers, L. 1972. Autoradiographic Distribution of Volatile Anesthetics within the Brain. Anesthesiology 37:324–331.

    Google Scholar 

  9. Trudell, J. R., Hubbell, W. L., andCohen, E. N., 1973. The Effect of Two Inhalation Anesthetics on the Order of Spin-labeled Phospholipid Vesicles. Biochim. Biophys. Acta 291:321–327.

    Google Scholar 

  10. Trudell, J. R., andHubbell, W. L., 1976. Localization of Molecular Halothane in Phospholipid Bilayer Model Nerve Membranes. Anesthesiology 44:202–205.

    Google Scholar 

  11. Rosenberg, P. H. 1979. Effects of Halothane, Lidocaine, and 5-Hydroxytryptamine on Fluidity of Synaptic Plasma Membranes, Myelin Membranes and Synaptic Mitochondrial Membranes. Naunyn-Schmiedeberg's Arch. Pharm. 307:199–206.

    Google Scholar 

  12. Rosenberg, P. H., Eibl, H., andStier, A. 1975. Biphasic Effects of Halothane in Phospholipid and Synaptic Plasma Membranes: A Spin Label Study. Mol. Pharm. 11:879–882.

    Google Scholar 

  13. Rosenberg, P. H., Jansson, S.-E., andGripenberg, J. 1977. Effects of Halothane, Thiopental, and Lidocaine on Fluidity of Synaptic Plasma Membranes and Artificial Phospholipid Membranes. Anesthesiology 46:322–326.

    Google Scholar 

  14. Sachsenheimer, W., Pai, E. F., Schulz, G. E., andSchirmer, R. H. 1977. Halothane Binds in the Adenine-Specific Niche of Crystalline Adenylate Kinase. FEBS Letters 79:310–312.

    Google Scholar 

  15. Vanderkooi, J. M., Landesberg, R., Selick II, H. andMcDonald, G. G., 1976. Interaction of General Anesthetics with Phospholipid Vesicles and Biochemical Membranes. Biochim. Biophys. Acta 464:1–6.

    Google Scholar 

  16. Mastrangelo, C. J., Trudell, J. R., Edmunds, H. N., andCohen, E. N. 1978. Effects of Clinical Concentrations of Halothane on Phospholipid-Cholesterol Membrane Fluidity. Mol Pharm. 14:463–467.

    Google Scholar 

  17. Sandhoff, K., andPallmann, B. 1978. Membrane-Bound Neuroaminidase from Calf Brain: Regulation of Oligosialoganglioside Degradation by Membrane Fluidity and Membrane Components. Proc. Natl. Acad. Sci. 75:122–126.

    Google Scholar 

  18. Pellkofer, R., andSandhoff, K. 1979. Halothane Increases Membrane Fluidity and Stimulates Sphingomyelin Degradation by Membrane-Bound Neutral Sphingomyelinase of Synaptosomal Plasma Membranes from Calf Brain Already at Clinical Concentrations. J. Neurochem. 34:988–992.

    Google Scholar 

  19. Pang, K.-Y. Y., Braswell, L. M., Chang, L., Sommer, T. J., andMiller, K. W. (1980) The Perturbation of Lipid Bilayers by General Anesthetics. Mol. Pharmacol. 18:84–90.

    Google Scholar 

  20. Blanck, T. J. J., Gruener, R., Suffecoul, S. L., andThompson, M. 1981. Calcium Uptake by Isolated Sarcoplasmic reticulum: Examination of halothane inhibition, pH Dependence, and CA2+ Dependence of Normal and Malignant Hyperthermic Human Muscle. Anesth. Analg. 60:492–498.

    Google Scholar 

  21. Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigman, M. R., andMorrell, P. 1976. Myelin Synthesis During Postnatal Nutritional Deprivation and Subsequent Rehabilitation. Brain Res. 107:257–273.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  23. Norton, W. T. (1976) Formation, structure and biochemistry of myelin Pages 74–99,in Siegel, G. J., Albers, R. W., Katzmann, R., andAgranoff, B. W. (eds.), Basic Neurochemistry, Boston: Little Brown and Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divakaran, P., Wiggins, R.C. Relative halothane accumulation in brain subcellular membranes in vitro. Neurochem Res 7, 1347–1358 (1982). https://doi.org/10.1007/BF00966063

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966063

Keywords

Navigation