Skip to main content
Log in

The sulphydryl groups of ox brain and liver glutamate dehydrogenase preparations and the effects of oxidation on their inhibitor sensitivities

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate dehydrogenase preparations from several sources have been shown to have suffered limited proteolysis during purification. This proteolysis has been previously shown to involve removal of the N-terminal tetrapeptide and to result in changes in the regulatory properties of the enzyme. In the present work the previously unidentified N-terminal residue of the unproteolysed enzyme from ox brain and liver is shown to be cysteine. The thiol group of this residue is masked in the native enzyme but it becomes accessible after reduction. Exposure of solutions of the unproteolysed enzyme to air oxidation causes large changes in its sensitivity to inhibition by the antipsychotic drug perphenazine, GTP and by high concentrations of NADH. No such changes occurred in the behaviour of preparations of the enzyme that had suffered proteolysis during purification under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicklas, W. J. 1988. Glutamate and glutamine in mammals: an overview. Pages 1–4in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, vol. 1 CRC Press, Boca Raton.

    Google Scholar 

  2. Tildon, J. T., and Zielke, H. R. 1988. Glutamine: an energy source for mammalian tissues. Pages 167–182in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, vol. 1. CRC Press, Boca Raton.

    Google Scholar 

  3. Syed, S.-E.H., and Engel, P. C. 1984. Ox liver glutamate dehydrogenase: the use of chemical modification to study the relationship between catalytic sites for different amino acid substrates and the question of kinetic non-equivalence of subunits. Biochem. J. 222:621–626.

    PubMed  Google Scholar 

  4. Couée, I., and Tipton, K. F. 1989. Activation of glutamate dehydrogenase byl-leucine. Biochim. Biophys. Acta. 995:97–101.

    PubMed  Google Scholar 

  5. Tipton, K. F., and Couée, I. 1988. Glutamate dehydrogenase. Pages 81–100in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, vol I. CRC Press, Boca Raton.

    Google Scholar 

  6. Nemat-Gorgani, M., and Dodd, G. 1977. The interaction of phospholipid membranes and detergents with glutamate dehydrogenase. II. Fluorescence and stopped-flow studies. Eur. J. Biochem. 74:139–147.

    PubMed  Google Scholar 

  7. Nemat-Gorgani, M., and Dodd, G. 1977. The interaction of phospholipid membranes and detergents with glutamate dehydrogenase. I. Kinetic studies. Eur. J. Biochem. 74:129–137.

    Google Scholar 

  8. Couée, I. and Tipton, K. F. 1989. The effects of phospholipids on the activation of glutamate dehydrogenase byl-leucine. Biochem. J. 261:921–925.

    PubMed  Google Scholar 

  9. Shemisa, O. A., and Fahien, L. A. 1971. Modification of glutamate dehydrogenase by various drugs which affect behavior. Mol. Pharmacol. 7:8–25.

    PubMed  Google Scholar 

  10. Veronese, F. M., Bevilacqua, R., and Chaiken, I. M. 1979. Drug-protein interactions: evaluation of the binding of antipsychotic drugs to glutamate dehydrogenase by quantitative affinity chromatography. Mol. Pharmacol. 15:313–321.

    PubMed  Google Scholar 

  11. Couée, I., and Tipton, K. F. 1990. The inhibition of glutamate dehydrogenase by some antipsychotic drugs. Biochem. Pharmacol. 39:827–832.

    PubMed  Google Scholar 

  12. Couée, I., and Tipton, K. F. 1990. Inhibition of ox brain glutamate dehydrogenase by perphenazine. Biochem. Pharmacol. 39:1167–1174.

    PubMed  Google Scholar 

  13. McCarthy, A. D., Walker, J. M., and Tipton, K. F. 1980. Purification of glutamate dehydrogenase from ox brain and liver. Biochem. J. 191:605–611.

    PubMed  Google Scholar 

  14. McCarthy, A. D., and Tipton, K. F. 1983. Glutamate dehydrogenase. Pages 19–32,in Hertz, L, Kvamme, E. McGeer, E. G. and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System. A. R. Liss, New York.

    Google Scholar 

  15. McCarthy, A. D., and Tipton, K. F. 1985. Ox glutamate dehydrogenase. Comparison of the kinetic properties of native and proteolysed preparations. Biochem. J. 230:95–99.

    PubMed  Google Scholar 

  16. Graham, L. D., Griffin, T. O., Beattie, R. E., McCarthy, A. D., and Tipton, K. F. 1985. Purification of liver glutamate dehydrogenase by affinity precipitation and studies on its denaturation. Biochim. Biophys. Acta 828:266–269.

    PubMed  Google Scholar 

  17. Felipo, V., Miralles, V., Knecht, E., Hernandez-Yaso, J., and Grisolia, S. 1983. The precursor of rat liver mitochondrial glutamate dehydrogenase has enzymatic activity. Eur. J. Biochem. 133:641–644.

    PubMed  Google Scholar 

  18. Ellman, G. L. 1959. Tissue sulphydryl groups. Arch. Biochem. Biophys. 82:70–77.

    PubMed  Google Scholar 

  19. Olson, J. A., and Anfinsen, C. B. 1959. Crystallization and characterization ofl-glutamic dehydrogenase. J. Biol. Chem. 197:67–79.

    Google Scholar 

  20. Moon, K. and Smith, E. L. 1973. Sequence of bovine liver glutamate dehydrogenase. J. Biol. Chem. 248:3082–3088.

    PubMed  Google Scholar 

  21. Riddles, P. W., Blakeley, R. L., and Zerner, B. 1983. Reassessment of Ellman's reagent. Meth. Enzymol. 91:9–60.

    Google Scholar 

  22. Habeeb, A. F. S. A. 1972. Reaction of protein sulfhydryl groups with Ellman's reagent. Meth. Enzymol. 25:457–464.

    Google Scholar 

  23. Gray, W. R. 1972. End-group analysis using dansyl chloride. Meth. Enzymol. 25:121–138.

    Google Scholar 

  24. Bitensky, M. W., Yielding, K. L., and Tomkins, G. M. 1965. The effect of allosteric modifiers on the rate of denaturation of glutamate dehydrogenase. J. Biol. Chem. 240:1077–1082.

    PubMed  Google Scholar 

  25. Woods, K. R., and Wang, K.-T. 1967. Separation of dansylamino acids by polyamide layer chromatography. Biochim. Biophys. Acta. 133:369–370.

    PubMed  Google Scholar 

  26. Niederwieser, A. 1972. Thin-layer chromatography of amino acids and derivatives. Meth. Enzymol. 25:60–99.

    Google Scholar 

  27. Perham, R. N. 1978. Techniques for determining the amino-acid composition and sequence of proteins. Pages 1–52in Kornberg, H. L., Metcalfe, J. C., Northcote, D. H., Pogson, C. I. and Tipton, K. F. (eds.), Techniques in the Life Sciences. B1/1. Elsevier, Amsterdam.

    Google Scholar 

  28. Moon, K., Piszkiewicz, D., and Smith, E. L. 1973. Amino acid sequence of chicken liver glutamate dehydrogenase. J. Biol. Chem. 248:3093–3103.

    PubMed  Google Scholar 

  29. Julliard, J. H. and Smith, E. L. 1979. Partial amino acid sequence of the glutamate dehydrogenase of human liver and a revision of the sequence of the bovine enzyme. J. Biol. Chem. 254:3427–3438.

    PubMed  Google Scholar 

  30. Smith, E. L., Austen, B. M., Blumenthal, K. M., and Nyc, J. F. 1975. Glutamate dehydrogenases. Pages 293–367in Boyer, P. D. (ed.), The Enzymes 3rd Ed. vol. 11. Academic Press, New York.

    Google Scholar 

  31. Amuro, N., Ooki, K., Ito, A., Goto, Y., and Okazaki, T. 1989. Nucleotide sequence of rat liver glutamate dehydrogenase cDNA. Nucleic Acid Res. 17:2356.

    PubMed  Google Scholar 

  32. Mavrothalassitis, G., Tzimagiorgis, G., Mitsialis, A., Zannis, V., Plaitakis, A., Papamatheakis, J., and Moschonas, N. 1988. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: Evidence for a small gene family. Proc. Nat. Acad. Sci. U.S.A. 85:3494–3498.

    Google Scholar 

  33. Ifflaender, U., and Sund, H. 1972. Association behaviour of rat liver glutamate dehydrogenase. FEBS Lett. 20:287–290.

    PubMed  Google Scholar 

  34. Suva, R. H., and Abeles, R. H. 1978. Studies on the mechanism of action of plasma amine oxidase. Biochemistry 17:3538–3545.

    PubMed  Google Scholar 

  35. Ferdinand, W., Stein, W. H., and Moore, S. 1965. An unusual disulfide bond in streptococcal proteinase. J. Biol. Chem. 240:1150–1155.

    PubMed  Google Scholar 

  36. Marsh, E. N., and Leadlay, P. F. 1988. Methylmalonyl-CoA mutase fromPropionibacterium shermanii: evidence for the presence of two masked cysteinyl residues. Biochem. J. 260:339–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Santiago Grisolia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couée, I., Tipton, K.F. The sulphydryl groups of ox brain and liver glutamate dehydrogenase preparations and the effects of oxidation on their inhibitor sensitivities. Neurochem Res 16, 773–780 (1991). https://doi.org/10.1007/BF00965686

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965686

Key Words

Navigation