Skip to main content
Log in

Lysine metabolism in the human and the monkey: Demonstration of pipecolic acid formation in the brain and other organs

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabolism ofl-[U-14C]lysine was studied in the human autopsy tissues and the intact monkeys through intracerebroventricular and intravenous injections. The human tissues were more active in the metabolism ofl-[14C]lysine to [14C]pipecolate than the rat tissues previously reported. This metabolism was equally active in the phosphate (pH 7) and the glycyl-glycine (pH 8.6) buffers with the brain and the kidney having higher activity than the liver. Besides [14C]pipecolate, traces of [14C]saccharopine and α-[14C]aminoadipate were also detected in the liver incubation. Twenty-four hr after intraventricular injection ofl-[14C]lysine to the monkey, substantial labeling of pipecolate and α-aminoadipate was observed in the brain and spinal cord, with the kidney, liver and the plasma having much reduced levels. Radioactivity levels of these two compounds were found low in the organs and plasma of the intravenously injected monkey. The urine of both monkeys contained only traces of [14C]pipecolate, even though it contained high levels ofl-[14C]lysine and α-[14C]aminoadipate. It was concluded thatl-lysine is actively metabolized to pipecolate and α-aminoadipate in the human and the monkey, that this reaction is most active in the brain whenl-lysine is intraventricularly administered, and that in contrast to the rat, the monkey may have an effective renal reabsorption for pipecolate which is similar to the human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulanger, P., Osteux, R., Sacquet, E., andCharlier, H. 1969. La degradation de lal-lysine chez le rat “germfree.” Biochim. Biophys. Acta 184:338–344.

    PubMed  Google Scholar 

  2. Chang, Y. F. 1976. Pipecolic acid pathway: The major lysine metabolic route in the rat brain. Biochem. Biophys. Res. Commun. 69:174–180.

    PubMed  Google Scholar 

  3. Chang, Y. F. 1978. Lysine metabolism in the rat brain: The pipecolic acid-forming pathway. J. Neurochem. 30:347–354.

    PubMed  Google Scholar 

  4. Chang, Y. F. 1978. Lysine metabolism in the rat brain: Blood-brain barrier transport: Formation of pipecolic acid and human hyperpipecolatemia. J. Neurochem. 30:355–360.

    PubMed  Google Scholar 

  5. Chang, Y. F., andAdams E. 1974.d-Lysine catabolic pathway inPseudomonas putida: Interrelations withl-lysine catabolism. J. Bacteriol. 117:753–764.

    PubMed  Google Scholar 

  6. Chang, Y. F., Hernandez, M. F., andMyslinski, N. R. 1981. Enhancement of hexobarbital-induced sleep by lysine and its metabolites. Life Sci. 28:407–413.

    PubMed  Google Scholar 

  7. Charles, A. K., andChang, Y. F. 1981. Uptake, release and metabolism ofd- andl-α-aminoadipate by rat cerebral cortex. J. Neurochem. 36:1127–1136.

    PubMed  Google Scholar 

  8. Charles, A. K., andChang, Y. F. 1981. Metabolism and uptake ofl-pipecolic acid by brain and heart. Life Sci. 29:947–954.

    PubMed  Google Scholar 

  9. Danks, D. M., Tippet, P., Adams, C., andCampbell, P. 1975. Cerebro-hepato-renal syndrome of Zellweger. J. Pediat. 86:382–387.

    PubMed  Google Scholar 

  10. Dolezalova, H., Giacobini, E., Seiler, N., andSchneider, H. H. 1973. Determination of piperidine in snail brain (Helix promatia). Brain Res. 55:242–244.

    PubMed  Google Scholar 

  11. Drucker-Colin, R. R., andGiacobini, E. 1975. Sleep-inducing effect of piperidine. Brain Res. 88:186–189.

    PubMed  Google Scholar 

  12. Garweg, G., Von Rehren, D., andHintz, U. 1980.l-Pipecolate formation in the mammalian brain. Regional distribution of Δ1-pyrroline-2-carboxylate reductase activity. J. Neurochem. 35:616–621.

    PubMed  Google Scholar 

  13. Gatfield, P. D., Taller, E., Hinton, G. G., Wallace, A. C., Abdelnour, G. M., andHaust, M. D. 1968. Hyperpipecolatemia: A new metabolic disorder associated with neuropathy and hepatomegaly: A case study. Can. Med. Ass. J. 99:1215–1233.

    PubMed  Google Scholar 

  14. Grove, J. A., Gilbertson, T. J., Hammerstedt, R. H., andHenderson, L. M. 1969. The metabolism ofd- andl-lysine specifically labeled with15N. Biochim. Biophys. Acta 184:329–337.

    PubMed  Google Scholar 

  15. Grove, J., andHenderson, L. M. 1968. The metabolism ofd- andl-lysine in the intact rat, perfused liver and liver mitochondria. Biochim. Biophys. Acta 165:113–120.

    PubMed  Google Scholar 

  16. Hernandez, M. F., andChang, Y. F. 1980. In vitro synthesis ofl-pipecolate froml-lysine: Inconsistent with ∈-N-acetyl-l-lysine as an obligatory intermediate. Biochem. Biophys. Res. Commun. 93:762–769.

    PubMed  Google Scholar 

  17. Higashino, K., Fujioka, M., Aoki, T., andYamamura, Y. 1967. Metabolism of lysine in rat liver. Biochem. Biophys. Res. Commun. 29:95–100.

    PubMed  Google Scholar 

  18. Higashino, K., Fujioka, M., andYamamura, Y. 1971. The conversion ofl-lysine to saccharopine and α-aminoadipate in mouse. Arch. Biochem. Biophys. 142:606–614.

    PubMed  Google Scholar 

  19. Higashino, K., Tsukada, K., andLieberman, J. 1965. Saccharopine, a product of lysine breakdown by mammalian liver. Biochem. Biophys. Res. Commun. 20:285–290.

    PubMed  Google Scholar 

  20. Hildegard, P., Bachmann, D., Lombeck, I., Becker, K., Wendel, U., Wadman, S. K., andBremer, J. J. 1975. Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clin. Chim. Acta 58:257–269.

    PubMed  Google Scholar 

  21. Hutzler, J., andDancis, J. 1968. Conversion of lysine to saccharopine by human tissues. Biochim. Biophys. Acta 158:62–69.

    PubMed  Google Scholar 

  22. Hutzler, J., andDancis, J. 1975. Lysine-ketoglutarate reductase in human tissues. Biochim. Biophys. Acta 377:42–51.

    PubMed  Google Scholar 

  23. Kasé, Y., Kataoka, M., Miyata, T., andOkano, Y. 1973. Pipecolic acid in the dog brain. Life Sci. 13:867–873.

    PubMed  Google Scholar 

  24. Kasé, Y., Miyata, T., andYuizono, T. 1967. Pharmacological studies on alicyclic amines. Report I. Comparison of pharmacological activities of piperidine with those of other amines. Jap. J. Pharmacol. 17:475–490.

    PubMed  Google Scholar 

  25. Kasé, Y., Takahama, K., Hashimoto, T., Kaisaku, J., Okano, Y., andMiyata, T.. 1980. Electrophoretic study of pipecolic acid, a biogenic imino acid, in the mammalian brain. Brain Res. 193:608–613.

    PubMed  Google Scholar 

  26. Meek, J. L. 1974. Uptake and metabolism of piperidine and pipecolic acid in brain. Fed. Proc. 33:468.

    Google Scholar 

  27. Myslinski, N. R., Charles, A. K., andChang, Y. F. 1981. Kinetics of blood-brain transport ofl-pipecolic acid. Proc. 8th Internat. Congr. Pharmacol., Tokyo, Japan, July 19, 1981. Abst. No. 567.

  28. Neuberger, A., andSanger, F. 1944. The metabolism of lysine. Biochem. J. 38:119–125.

    Google Scholar 

  29. Nomura, Y., Okuma, Y., andSegawa, T. 1978. Influence of piperidine and pipecolic acid on the uptake of monoamines, GABA and glycine into P2 fractions of the rat brain and spinal cord. J. Pharm. Dyn. 1:251–255.

    Google Scholar 

  30. Nomura, Y., Okuma, Y., Segawa, T., Schmidt-Glenewinkel, T., andGiacobini, E. 1979. A calcium-dependent, high potassium-induced release of pipecolic acid from rat brain slices. J. Neurochem. 33:803–805.

    PubMed  Google Scholar 

  31. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1978.In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Dev. Neurosci. 1:239–249.

    Google Scholar 

  32. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1980. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem. Res. 5:1163–1173.

    PubMed  Google Scholar 

  33. Okuma, Y., Nomura, Y., andSegawa, T. 1979. The effect of piperidine and pipecolic acid on high potassium-induced release of noradrenaline, serotonin and GABA from rat brain slices. J. Pharm. Dyn. 2:261–265.

    Google Scholar 

  34. Paik, W. K. 1962. Deacetylation of α-keto-∈-acetamidocaproic acid by ∈-lysine acylase. Biochim. Biophys. Acta 65:518–520.

    PubMed  Google Scholar 

  35. Paik, W. K., andKim, S. 1964. Enzymatic synthesis of ∈-N-acetyl-l-lysine. Arch. Biochem. Biophys. 108:221–229.

    PubMed  Google Scholar 

  36. Rothstein, M., andMiller, L. L. 1954. The conversion of lysine to pipecolic acid in the rat. J. Biol. Chem. 211:851–858.

    PubMed  Google Scholar 

  37. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1977. The conversion of lysine into piperidine, cadaverine, and pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 2:619–637.

    Google Scholar 

  38. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1978. Pipecolic acid in mouse brain synaptosomes. 9th Ann. Mtg. Am. Soc. Neurochem., Washington, D.C. Abst.

  39. Scriver, C. R., andRosenberg, L. E. 1973. Lysine, Pages 250–255, Amino acid metabolism and its disorders, Saunders, Philadelphia.

    Google Scholar 

  40. Snider, R. S., andLee, J. C. 1961. A stereotaxic atlas of the monkey brain (Macaca mulatta). The University of Chicago Press. Chicago & London.

    Google Scholar 

  41. Stepita-Klauco, M., Dolezalova, H., andFairweather, R. 1974. Piperidine increase in the brain of dormant mice. Science 183:536–537.

    PubMed  Google Scholar 

  42. Thomas, G. H., Haslam, R. H. A., Batshaw, M. L., Capute, A. J., Neidengard, L., andRansom, J. L. 1975. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin. Genetics 8:376–382.

    Google Scholar 

  43. Woody, N. C. 1964. Hyperlysinemia. Am. J. Dis. Child. 108:543–553.

    PubMed  Google Scholar 

  44. Woody, N. C., andPupene, M. B. 1970. Excretion of pipecolic acid by infants and by patients with hyperlysinemia. Pediat. Res. 4:89–95.

    PubMed  Google Scholar 

  45. Zanakis, M. F., Wells, M. R., andBernstein, J. J. 1977. Incorporation of [3H]lysine into the brain and spinal cord of the Cebus (Cebus appella) and Rhesus (Macaca mulatta) monkeys. J. Neurosci. Res. 3:73–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YF. Lysine metabolism in the human and the monkey: Demonstration of pipecolic acid formation in the brain and other organs. Neurochem Res 7, 577–588 (1982). https://doi.org/10.1007/BF00965124

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965124

Keywords

Navigation