Skip to main content
Log in

Effect of ferric nitrilotriacetate on predominantly cortical neuronal cell cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Predominately neuronal cell cultures were produced as described in previous communications. Neuronal cells were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies of the neuronal cells were performed at 13 and 20 days in culture. In addition to morphologic studies, biochemical assays including choline acetyltransferase (ChAT) activity, specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]FLU binding, Ro5-4864-displaceable [3H]FLU binding, high-affinity [3H]GABA uptake, and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on predominately neuronal cultures after 7 days of exposure as measured by choline acetyltransferase activity, while other measures remained unaffected; however, after 14 days of exposure all measures were significantly decreased. The effects of Fe-NTA exposure appear to be both concentration and duration-of-exposure related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swaiman, K. F., Smith, S. A., Trock, G. L., and Siddiqui, A. R. 1983. Sea-blue histiocytes, lymphocytic cytosomes, and59Fe-studies in Hallervorden-Spatz syndrome. Neurology 33:301–5.

    Google Scholar 

  2. Szanto, J., Gallyas F. 1966. A study of iron metabolism in neuropsychiatric patients; Hallervorden-Spatz disease. Arch Neurol 14:438–42.

    Google Scholar 

  3. Goodman, L., 1953. Alzheimer's disease. A clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J Nerv Ment Dis 118:97–130.

    Google Scholar 

  4. Akelaitis, A. J. 1944. Atrophy of basal ganglia in Pick's disease. Arch Neurol Psychiatry 51:27–34.

    Google Scholar 

  5. Earle, K. M. 1968. Studies on Parkinson's disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue. J Neuropathol Exp Neurol 27:1–14.

    Google Scholar 

  6. Lhermitte, J., Kraus, W. M., McAlpine, D. 1924. Etude des produits de desintegration et des depots du globus pallidus dans un cas de syndrome parkinsonien. Rev Neurol 1:356–61.

    Google Scholar 

  7. Rojas, G., Asenjo, A., Chiorino, R., Aranda, L., Rocamora, R., Donoso, P. 1965. Cellular and subcellular structure of the ventrolateral nucleus of the thalamus in Parkinson disease. Deposits of iron. Confin Neurol 26:362–76.

    Google Scholar 

  8. Merritt, H. H., Adams, R. D., Solomon, H. C. 1946. Neurosyphilis. Oxford University Press.

  9. Williams, A., Hoy, T. G., Jacobs, A. 1982. Cellular proliferation and susceptibility to iron toxicity in iron loaded cell cultures. Scand J Haematol 28:227–32.

    Google Scholar 

  10. Jacobs, A., Hoy, T., Humphrys, J., Perera, P. 1978. Iron overload in Chang cell cultures: biochemical and morphological studies. Br J Exp Path 59:489–98.

    Google Scholar 

  11. Bailey-Wood, R., White, G. P., Jacobs, A. 1975. The use of Chang cells cultured in vitro for the investigation of cellular iron metabolism. Br J Exp Path 56:358–62.

    Google Scholar 

  12. White, G. P., and Jacobs, A. 1978. Iron uptake by Chang cells from transferrin nitrilotriacetate and citrate complexes: The effects of iron-loading and chelation with desferrioxamine. Biochim Biophys Acta 543:217–25.

    Google Scholar 

  13. Swaiman, K. F., and Machen, V. L. 1985. The effect of iron on mammalian cortical neurons in culture. Neurochem Res 10:1261–8.

    Google Scholar 

  14. Swaiman, K. F., Machen, V. L. 1985. Iron uptake by glial cells. Neurochem Res 12:1635–44.

    Google Scholar 

  15. Swaiman, K. F., Neale, E. A., Fitzgerald, S., Nelson, P. G. 1982. A method for large scale production of fetal mouse cerebral cortical cultures. Dev Brain Res 3:361–9.

    Google Scholar 

  16. Stookey, L. L. 1970. A new spectrophotometer reagent for iron. Anal Chem 42:779.

    Google Scholar 

  17. Boespflug, O., Swaiman, K. F. 1986. Neurotransmitter changes during development of cortical neuronal cultures. Dev Neurosci 8:102–10.

    Google Scholar 

  18. Schrier, B. K., Shapiro, D. L. 1974. Effects of fluorodeoxyuridine on growth and choline acetyltransferase activity in fetal brain cells in surface culture. J Neurobiol 5:151–9.

    Google Scholar 

  19. Sher, P. K., Schrier, B. K. 1982. Benzodiazepine receptor development in cultures in fetal mouse cerebral cortex mimics its development in vivo. Dev Neurosci 5:263–70.

    Google Scholar 

  20. Sher, P. K., Schrier, B. K., Van Putten, D. 1982. An in situ assay for determination of benzodiazepine binding. Dev Neurosci 5:271–7.

    Google Scholar 

  21. McCarthy, K. D., Harden, T. K. 1981. Identification of two benzodiazepine binding sites on cells cultured from rat cerebral cortex. J Pharmac Exp Ther 216:183–91.

    Google Scholar 

  22. Farb, D. H., Berg, D. K., Fischbach, G. D. 1979. Uptake and release of [3H]-gamma-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J Cell Biol 80:651–61.

    Google Scholar 

  23. Lowry, O. H., Rosebrough, N. F., Farb, A., Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193:265–75.

    Google Scholar 

  24. Swaiman, K. F., and Wu, S. R. 1984. Phenylalanine and phenylacetate adversely affect developing mammalian brain neurons. Neurology 34:1246–50.

    Google Scholar 

  25. Neale, E. A., Oertel, W. H., Bowers, L. M., Weise, V. K. 1983. Glutamate decarboxylase immunoreactivity and its gamma [3H]-aminobutyric acid accumulation within the same neurones in dissociated cell cultures of cerebral cortex. J Neurosci 3:376–82.

    Google Scholar 

  26. Cox, P. G., Harvey, N. E., Sciortino, C., Byers, B. R. 1981. Electronmicroscopic and radioiron studies of iron uptake in newborn rat myocardial cells in vitro. Am J Pathol 102:151–9.

    Google Scholar 

  27. Swaiman, K. F., Machen, V. L. 1986. Transferrin binding by mammalian cortical cells. Neurochem Res 11:1241–8.

    Google Scholar 

  28. Swaiman, K. F., Machen, V. L. 1984. Iron uptake by mammalian cortical neurons. Ann Neurol 16:66–70.

    Google Scholar 

  29. Hill, J., Switzer III, R. C. 1984. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–602.

    Google Scholar 

  30. Hallgren, B., Sourander, P. 1958. The effect of age on the nonhaemin iron in the human brain. J Neurochem 3:47–51.

    Google Scholar 

  31. Ashkenazi, R., Ben-Schachar, D., Youdim, M. B. H. 1982. Nutritional iron and dopamine binding sites in the rat brain. Pharmacol Biochem Behav 17(suppl 1):43–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaiman, K.F., Machen, V.L. Effect of ferric nitrilotriacetate on predominantly cortical neuronal cell cultures. Neurochem Res 14, 683–688 (1989). https://doi.org/10.1007/BF00964879

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964879

Key Words

Navigation