Skip to main content
Log in

On the positive solutions of some nonlinear diffusion problems

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

We consider the nonlinear diffusion equationu t −a(x, u x x )+b(x, u)=λg(x, u) with initial boundary conditions\(u\left( {0, x} \right) = \mathop u\limits_ - \left( x \right)\) andu(t, 0)=u(t, 1)=0. Here,a, b, andg denote some real functions which are monotonically increasing with respect to the second variable. Then, the corresponding stationary problem has a positive solution if and only ifλ∈(0,λ *) orλ∈(0,λ *]. The endpointλ * can be estimated by\(\begin{gathered} \lambda * \leqq \sup \mu _1 \left\{ u \right\} \hfill \\ u \hfill \\ \end{gathered} \), whereμ 1 u denotes the first eigenvalue of the stationary problem linearized at the “point”u. The minimal positive steady state solutions are stable with respect to the nonlinear parabolic equation.

Zusammenfassung

Wir betrachten die nichtlineare Diffusionsgleichungu t −a(x, u x ) x +b(x, u)=λg(x, u) mit Randbedingungen\(u\left( {0, x} \right) = \mathop u\limits_ - \left( x \right)\) undu (t, 0)=u (t, 1)=0. Dabei sinda, b, undg monoton wachsende Funktionen bzgl. des zweiten Argumentes. Das zugehörige stationäre Problem hat genau dann eine positive Lösung, fallsλ∈ (0,λ *) oderλ∈(0,λ *]. Der Endpunktλ * kann durch\(\begin{gathered} \lambda * \leqq \sup \mu _1 \left\{ u \right\} \hfill \\ u \hfill \\ \end{gathered} \) abgeschätzt werden, wobeiμ 1 u den ersten Eigenwert des an der Stelleu linearisierten stationären Problems bezeichnet. Die minimale positive stationäre Lösung ist stabil bzgl. der obigen nichtlinearen parabolischen Gleichung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Astaburuaga, J. Figueroa and J. Weyer,Newton iterates for positive solutions of a class of nonlinear eigenvalue problems. Numerical methods for bifurcation problems (T. Küpper, H. D. Mittelmann, H. Weber Ed.). Birkhäuser: Int. Ser. Num. Math.70, 575–584 (1984).

  2. D. S. Cohen,Positive solutions of a class of nonlinear eigenvalue problems. J. Math. Mech.17, 209–215 (1967).

    Google Scholar 

  3. H. B. Keller and D. S. Cohen,Some positone problems suggested by nonlinear heat generation. J. Math. Mech.16, 1361–1367 (1967).

    Google Scholar 

  4. J. W. Mooney and G. F. Roach,Iterative bounds for the stable solutions of convex nonlinear boundary value problems. Proc. Roy. Soc. Edinburgh (A) 76, 81–94 (1976).

    Google Scholar 

  5. W. Walter,Gewöhnliche Differentialgleichungen. Heidelberger Taschenbücher110, Springer, Berlin-Heidelberg-New York 1976.

    Google Scholar 

  6. J. Weyer,über maximale Monotonie von Operatoren des Typs L * Φ∘L. Manuscripta Math.28, 305–316 (1979).

    Google Scholar 

  7. J. Weyer,Nonlinear elliptic equations and operators of the type L * Φ∘L. Nonlinear Analysis TMA6, 615–623 (1982).

    Google Scholar 

  8. J. Weyer,Picard iterats for positive solutions of a class of nonlinear eigenvalue problems. J. Appl. Math. Phys. (ZAMP)34, 728–745 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyer, J. On the positive solutions of some nonlinear diffusion problems. Z. angew. Math. Phys. 36, 499–507 (1985). https://doi.org/10.1007/BF00945292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945292

Keywords

Navigation