Skip to main content
Log in

Asymptotic analysis of a model for substitutional-interstitial diffusion

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

A substitutional-interstitial model for impurity diffusion in semi-conductors is discussed. In particular we consider a surface-source problem and obtain asymptotic solutions in the limit of the surface concentration of impurity being much greater than the equilibrium vacancy concentration. In the absence of vacancy generation, a double error function impurity curve is obtained. These double profiles reproduce some of the qualitative features of diffusion in many III–V semiconductor systems. We also discuss how vacancy generation modifies the analysis and show that in the limit of high vacancy generation, the problem becomes one of linear diffusion with the diffusion curves then being single error function complements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturge, M. D.,A note on the theory of diffusion of copper in germanium. Proc. Phys. Soc.,73, 297–306 (1959).

    Google Scholar 

  2. Frank, F. C. and Turnbull, D.,Mechanisms of diffusion of copper in germanium. Phys. Rev.,104, 617–618 (1956).

    Google Scholar 

  3. Ghandhi, S. K.,VLSI Fabrication Principles. 1st edn. John Wiley & Sons (1983).

  4. Tuck, B.,Diffusion of zinc in GaAs under conditions of vacancy non-equilibrium. Phys. Stat. Solidi, (b)45, K157-K160 (1971).

    Google Scholar 

  5. Tuck, B. and Kadhim, M. A. H.,Anomalous diffusion profiles of zinc in GaAs. J. Mater. Sci.,7, 585–591 (1972).

    Google Scholar 

  6. Zahari, M. D. and Tuck, B.,Substitutional-interstitial diffusion in semiconductors. J. Phys. D: Appl. Phys.,18, 1585–1595 (1985).

    Google Scholar 

  7. King, J. R., Meere, M. G. and Rogers, T. G.,Asymptotic analysis of a non-linear model for substitutional diffusion in semiconductors. Z. angew. Math. Phys.,43, 505–525 (1992).

    Google Scholar 

  8. Ting, C. H. and Pearson, G. L.,Time-dependence of zinc diffusion in gallium arsenide under a concentration gradient. J. Electrochem. Soc.,118, 1454–1458 (1971).

    Google Scholar 

  9. Meere, M. G., King, J. R. and Rogers, T. G.,Estimation of parameters in numerical modelling of nonlinear diffusion in semiconductors. Int. J. Numerical Modelling: Electronic Networks, Devices and Fields,3, 99–110 (1990).

    Google Scholar 

  10. Zahari, M. D. and Tuck, B.,Substitutional-interstitial diffusion with bulk vacancy generation in semiconductors. J. Phys. D: Appl. Phys.,16, 635–644 (1983).

    Google Scholar 

  11. Hearne, M. T., Rogers, T. G. and Tuck, B.,Exact solutions for Substitutional-interstitial diffusion in semiconductors. Semicond. Sci. Technol.,3, 456–460 (1988).

    Google Scholar 

  12. Gosele, U. and Morehead, F.,Diffusion of zinc in gallium arsenide: A new model. J. Appl. Phys.,52(7), 4617–4619 (1981).

    Google Scholar 

  13. van Ommen, A. H.,Examination of models for Zn diffusion in GaAs. J. Appl. Phys.,54(9), 5055–5058 (1983).

    Google Scholar 

  14. Yu, S., Tan, T. Y., and Gosele, U.,Diffusion mechanism of chromium in GaAs. J. Appl. Phys.,70(9), 4827–4836 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meere, M.G., King, J.R. & Rogers, T.G. Asymptotic analysis of a model for substitutional-interstitial diffusion. Z. angew. Math. Phys. 45, 763–783 (1994). https://doi.org/10.1007/BF00942752

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942752

Keywords

Navigation