Skip to main content
Log in

Cell cycle duration in antheridial filaments ofChara spp. (Characeae) with different genome size and heterochromatin content

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The relationship between nuclear 1 C DNA content and cell cycle progression throughout successive stages of antheridial filaments were studied among five taxa ofChara: two dioecious species (n = 14):C. aspera (7.2 pg DNA),C. tomentosa (7.4 pg DNA), and three monoecious species (n = 28):C. vulgaris (13.5 pg DNA),C. fragilis (19.3 pg DNA), andC. contraria (19.6 pg DNA). With the use of double3H-thymidine labelling and morphometry a number of characteristics common to all of the investigated species were determined within the “proliferative periods” preceding spermiogenesis. These include: (1) simplified type of the cell cycle (S + G2 + M), due to complete lack of G1 intervals, (2) constant duration of S phase, (3) progressive shortening of G2 + M periods, and (4) gradual reduction of cell lengths at successive mitotic divisions. Nucleotypic dependence was found between genome size and several time parameters estimated for consecutive stages of antheridial filaments: the higher the DNA C-value, the longer the cell cycles, their component phases, the total duration of “the proliferative period”, as well as the lower the rate of growth of interphase cells. Differential Giemsa staining of late G2 phase nuclei revealed that the higher content of C-heterochromatin is connected with prolonged cell cycle durations in species with similar DNA C-values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M. D., 1971: The duration of meiosis. — Proc. Roy. Soc. London B178: 259–275.

    Google Scholar 

  • , 1972: Nuclear DNA content and minimum generation time in herbaceous plants. — Proc. Roy. Soc. London B181: 109–135.

    Google Scholar 

  • , 1977: The time and duration of meiosis. — Phil. Trans. Roy. Soc. London B277: 201–226.

    PubMed  Google Scholar 

  • , 1982: Nucleotypic basis of the spatial ordering of chromosomes in eucaryotes and the implications of the order for genome evolution and phenotypic variation. — InDover, G. A., Flavell, R. B., (Eds.): Genome evolution, pp. 239–261. — London: Academic Press.

    Google Scholar 

  • Corillion, R., 1975: Flore des Charophytes (Characées) du Massif armoricain et des contées voisines d'Europe occidentale. — Paris: Jouve Éditeurs.

    Google Scholar 

  • Evans, G. M., Rees, H., 1971: Mitotic cycles in dicotyledons and monocotyledons. — Nature233: 350–351.

    Google Scholar 

  • Godlewski, M., Olszewska, M. J., 1973: Comparison of the duration of the cell cycle in successive generation of synchronously dividing antheridial filaments ofChara vulgaris L. as measured with3H-thymidine. — Acta Soc. Bot. Polon.42: 121–131.

    Google Scholar 

  • Grime, J. P., Mowforth, M. A., 1982: Variation in genome size—an ecological interpretation. — Nature299: 151–153.

    Google Scholar 

  • Harris, E. B., Hoelzer, D., 1971: DNA synthesis time in leukaemic cells as measured by the double labelling and the percentage labelled mitoses methods. — Cell Tissue Kinetics4: 433–441.

    Google Scholar 

  • , 1972: An evaluation of various double labelling and autoradiographic techniques for measurement of DNA synthesis time in leukaemic cells. — J. Microscopy96: 205–217.

    Google Scholar 

  • Kenton, A., 1984: Chromosome evolution in theGibasis linearis group (Commelinaceae). III. DNA variation, chromosome evolution, and speciation inG. venustula andG. heterophylla. — Chromosoma90: 303–310.

    Google Scholar 

  • Kononowicz, A. K., Olszewska, M. J., Wałdoch, E., 1983: Changes in heterochromatin content during differentiation of some root tissues inVicia faba L. subsp.major and subsp.minor. — Biol. Zentralbl.102: 675–684.

    Google Scholar 

  • Kwiatkowka, M., Maszewski, J., 1978: Ultrastructure of nuclei during different phases of the cell cycle in the antheridial filaments ofChara vulgaris L. — Protoplasma96: 59–74.

    Google Scholar 

  • , 1979: Changes in the content of condensed chromatin during the cell cycle in antheridial filaments ofChara vulgaris L. as related to DNA and RNA polymerase activity. — Protoplasma98: 363–367.

    Google Scholar 

  • , 1990: Biological role of endoreplication in the process of spermatogenesis inChara vulgaris L. — Protoplasma155: 176–187.

    Google Scholar 

  • Marks, G. E., 1975: The Giemsa-staining centromeres ofNigella damascena. — J. Cell Sci.18: 19–25.

    PubMed  Google Scholar 

  • Maszewski, J., 1977: Influence of the light factor on the course of the cell cycle in the successive generations of the antheridial filaments ofChara vulgaris L. — Acta Soc. Bot. Polon.46: 31–45.

    Google Scholar 

  • - 1989: Morphogenesis of antheridia in mono- and dioecious species ofChara with different DNA contents. — Acta Universitatis Lodziensis, pp. 1–159 (in Polish).

  • - 1991: DNA replication in antheridial filaments ofChara spp. with different genome sizes and S phase durations. — Biol. Zentralbl. (in press).

  • Miller, M. B., Lyndon, R. F., 1975: The cell cycle in vegetative and floral shoot meristems measured by a double labelling technique. — Planta126: 37–43.

    Google Scholar 

  • Nagl, W., 1974a: Role of heterochromatin in the control of cell cycle duration. — Nature249: 53–54.

    PubMed  Google Scholar 

  • Nagl, W., 1974b: Mitotic cycle time in perennial and annual plants with various amounts of DNA and heterochromatin. — Dev. Biol.39: 342–346.

    PubMed  Google Scholar 

  • , 1976: Molecular and cytological characteristics of nuclear DNA and chromatin for angiosperm systematics: basic data forHelianthus annuus (Asteraceae). — Pl. Syst. Evol.126: 221–237.

    Google Scholar 

  • Nougarède, A., Rembur, J., 1977: Determination of the cell cycle and DNA synthesis duration in the shoot apex ofChrysanthemum segetum L. by double-labelling autoradiographic techniques. — Z. Pflanzenphysiol.85: 283–295.

    Google Scholar 

  • Olszewska, M. J., 1978: Chromatin condensation in late G2 phase as a factor related to the earlier initiation of mitosis in successive generations of antheridial filaments ofChara vulgaris L. — Micr. Acta80: 115–126.

    Google Scholar 

  • , 1982: Cell cycle control in synchronously dividing antheridial filaments ofChara vulgaris L. as revealed by cycloheximide pulse treatment. — Folia Histochem. Cytochem.20: 3–24.

    Google Scholar 

  • , 1983: Changes in the content of RNA, protein, and dry mass in nuclei, nucleoli, and cytoplasm, and rate of cell growth during cell cycle in root meristem ofVicia faba L. subsp.minor and subsp.major. — Micr. Acta87: 139–158.

    Google Scholar 

  • Price, H. J., Bachmann, K., 1976: Mitotic cycle time and DNA content in annual and perennialMicroseridinae (Compositae, Cichoriaceae). — Pl. Syst. Evol.126: 323–330.

    Google Scholar 

  • Pryor, A., Faulkner, K., Rhoades, M. M., Peacock, W. J., 1980: Asynchronous replication of heterochromatin in maize. — Proc. Natl. Acad. Sci. U.S.A.77: 6705–6709.

    Google Scholar 

  • Quastler, H., Sherman, F. G., 1959: Cell population kinetics in the intestinal epithelium of the mouse. — Exp. Cell Res.17: 420–438.

    PubMed  Google Scholar 

  • Rao, M. K., Pantulu, J. V., Jayalakshmi, K., 1979: Effect of B-chromosomes on the duration of mitotic cycle in pearl millet. — Experientia35: 1154–1155.

    Google Scholar 

  • Sarma, Y. S. R. K., 1983: Algal karyology and evolutionary trends. — InSharma, A. K., Sharma, A., (Eds.): Chromosomes in evolution of eukaryotic groups, pp. 177–223. — Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Sessions, S. K., Larson, A., 1987: Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. — Evolution41: 1239–1251.

    Google Scholar 

  • Turner, F. R., 1968: An ultrastructural study of plant spermatogenesis: Spermatogenesis inNitella. — J. Cell Biol.37: 370–394.

    PubMed  Google Scholar 

  • Van't Hof, J., 1965: Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. — Exp. Cell Res.39: 48–58.

    PubMed  Google Scholar 

  • , 1963: A relationship between DNA content, nuclear volume and minimum mitotic cycle time. — Proc. Natl. Acad. Sci. U.S.A.49: 897–902.

    PubMed  Google Scholar 

  • Wimber, D. E., Quastler, H., 1963: A14C- and3H-thymidine double labelling technique in the study of cell proliferation inTradescantia root tips. — Exp. Cell Res.30: 8–22.

    Google Scholar 

  • Young, R. C., Devita, V. T., Perry, S., 1969: The thymidine14C and3H double labelling technic in the study of the cell cycle of L 1210 Leukemia ascites tumor in vivo. — Cancer Res.29: 1581–1584.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maszewski, J., Kołodziejczyk, P. Cell cycle duration in antheridial filaments ofChara spp. (Characeae) with different genome size and heterochromatin content. Pl Syst Evol 175, 23–38 (1991). https://doi.org/10.1007/BF00942143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942143

Key words

Navigation