Skip to main content
Log in

Uptake of trace metals by sediments and suspended particulates: a review

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review addresses three of the possible mechanisms by which trace metals can be concentrated by sediments and suspended particulate matter. These are physico-chemical adsorption from the water column, biological uptake particularly by bacteria and algae, and the sedimentation and physical entrapment of enriched particulate matter. The relative importance of these three mechanisms will be different, depending upon the aqueous system, but there have been insufficient studies to allow the establishment of even ‘rule-of-thumb’ guidelines, as yet, about their quantitative importance under different conditions.

The importance of natural organic matter in the cycling of trace metals in aquatic systems has been stressed. This organic matter may complex with the trace metals and keep them in solution, or it may enhance the association of the trace metals with particulate matter by becoming adsorbed to the particulate surface and then complexing with the trace metals in the solution phase. Enhanced metal-particulate associations may also arise if the metal-organic complexes are able to adsorb to the surface.

The behaviour of natural organic matter may be the single most important influence on trace metal cycling in aquatic systems and should receive considerably more attention in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. J., 1979. Sediment-related fluvial transmission of contaminants: some advances in 1979. Scientific Series No. 107, Environment Canada, Ottawa. 24 pp.

    Google Scholar 

  • Allen, H. E., Hall, R. H. & Brisbin, T. D., 1980. Metal speciation: effect on aquatic toxicity. Environ. Sci. Tech. 14: 441–443.

    CAS  Google Scholar 

  • Baccini, P., 1976. Untersuchungen über den Schwermetallhaushalt in Seen. Schweiz. Z. Hydrol. 38: 121–158.

    CAS  Google Scholar 

  • Baccini, P., Hohl, H. & Bundi, Th., 1978. Phenomenology and modelling of heavy metal distribution in lakes. Verh. int. Verein. Limnol. 20: 1971–1975.

    Google Scholar 

  • Benjamin, M. M. & Leckie, J. O., 1980. Adsorption of metals at oxide interfaces: effects of the concentration of adsorbate and complexing metals. In: Baker, R. A. (Ed.) Contaminants and Sediments, Vol. 2, pp. 305–322. Ann Arbor Science Publ., Ann Arbor.

    Google Scholar 

  • Benjamin, M. M. & Leckie, J. O., 1981. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Coll. Interface Sci. 79: 209–221.

    CAS  Google Scholar 

  • Bjerkelund, I. E., 1981. Accumulation of heavy metals in Cladophera below the Guelph sewage treatment plant Ontario. M.Sci. thesis, Geog. Dept., Queens Univ., Kingston, Ontario. 271 pp.

    Google Scholar 

  • Bloom, H. & Ayling, G. M., 1977. Heavy metals in the Derwent estuary. Environ. Geol. 2: 3–22.

    CAS  Google Scholar 

  • Briand, F., Trucco, R. & Ramamoorthy, S., 1978. Correlation between specific algae and heavy metal binding in lakes. J. Fish. Res. Bd Can. 35: 1482–1485.

    CAS  Google Scholar 

  • Buffle, J., 1980. A critical comparison of studies of complex formation between copper (II) and fulvic substances of natural waters. Analyt. chim. Acta 118: 29–44.

    CAS  Google Scholar 

  • Button, K. S. & Hostetter, H. P., 1977. Copper sorption and release by Cyclotella meneghiniana (Bacillariophyceae) and Chlamydomonas reinhardtii(Chlorophyccae). J. Phycol. 13: 198–202.

    CAS  Google Scholar 

  • Chen, Y. & Schnitzer, M., 1976. Scanning electron microscopy of a humic acid and of a fulvic acid and its clay complexes. Soil Sci. Soc. Am. 40: 682–686.

    CAS  Google Scholar 

  • Curtis, C. D., 1966. The incorporation of soluble organic matter into sediments and its effect on trace element assemblages. In: Hobson, G. D. & Louis, M. C. (Eds.) Advances in Organic Chemistry, pp. 1–13. Pergamon Press, Oxford.

    Google Scholar 

  • Davies, A. G., 1978. Pollution studies with marine plankton: part II. Heavy metals. Adv. Mar. Biol. 15: 81–508.

    Google Scholar 

  • Davies, A. G. & Sleep, J. A., 1980. Copper inhibition of carbon fixation in coastal phytoplankton assemblages. J. mar. Biol. Assoc. 60: 841–850.

    CAS  Google Scholar 

  • Davies, J. A., 1980. Adsorption of natural organic matter from freshwater environments by aluminium oxide. In: Baker, R. A. (Ed.) Contaminants and Sediments, Vol. 2, pp. 279–304. Ann Arbor Science Publ., Ann Arbor.

    Google Scholar 

  • Davies, J. A. & Gloor, R., 1981. Adsorption of dissolved organics in lake water by aluminium oxide: effect of molecular weight. Environ. Sci. Tech. 15: 1223–1229.

    Google Scholar 

  • Davies, J. A., James, R. O. & Leckie, J. O., 1978. Surface ionization and complexation at the oxide/ water interface I. Computation of electrical double layer properties in simple electrolytes. J. Coll. Interface Sci. 63: 480–499.

    Google Scholar 

  • Davies, J. A. & Leckie, J. O., 1978. Effects of adsorbing complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Tech. 12: 1309–1315.

    Google Scholar 

  • Davison, W., 1981. Supply of iron and manganese to an anoxic lake basin. Nature 290: 241–243.

    Article  CAS  Google Scholar 

  • Delhaye, M., Dhamelincourt, P. & Wallart, F., 1979. Analysis of particulates by Raman microprobe. Toxicol. Environ. Chem. Rev. 3: 73–87.

    CAS  Google Scholar 

  • Dempsey, B. A. & Singer, P. C., 1980. The effects of cadmium on the adsorption of zinc by MnOx(s) and Fe(OH)3(am). In: Baker, R. A. (Ed.) Contaminants and Sediments, Vol. 2, pp. 333–352. Ann Arbor Science Publ., Ann Arbor.

    Google Scholar 

  • Dylla, H. F., Abrams, J. H., Hovland, C. T. & King, J. G., 1981. Scanning electron-stimulated desorption microscopy of model biological surfaces. Nature 291: 401–404.

    Article  CAS  PubMed  Google Scholar 

  • Ellaway, E. M., 1980. A study of trace metals in the Yarra River system, Victoria. M.App.Sci. thesis, Caulfield Inst. Tech., Caulfield East, Australia. 172 pp.

    Google Scholar 

  • Elliott, H. A. & Huang, C. P., 1971. The adsorption characteristics of Cu (II) in the presence of chelating agents. J. Coll. Interface Sci. 70: 29–45.

    Google Scholar 

  • Elliott, H. A. & Huang, C. P., 1980. Adsorption of some copper (II)-amino acid complexes at the solid-solution interface: effect of ligand and surface hydrophobicity. Environ. Sci. Tech. 14: 87–93.

    CAS  Google Scholar 

  • Everhart, D. S. & Reilley, C. N., 1981. Chemical derivatization in electron spectroscopy for chemical analysis of surface functional groups introduced on low density polyethylene film. Analyt. Chem. 53: 665–676.

    CAS  Google Scholar 

  • Farrah, H., Hatton, D. & Pickering, W. F., 1980. The affinity of metal ions for clay surfaces. Chem. Geol. 28: 55–68.

    Article  CAS  Google Scholar 

  • Ferguson, J. & Bubela, B., 1974. The concentration of Cu (II), Pb (II) and Zn (II) from aqueous solutions by particulate algal matter. Chem. Geol. 13: 163–186.

    Article  CAS  Google Scholar 

  • Forstner, U., 1982. Accumulative phases for heavy metals in limnic sediments. 2nd Int. Symp. on Interactions between Sediments and Freshwater, Queens Univ., Kingston, Ontario. (This volume).

    Google Scholar 

  • Forstner, U. & Wittmann, G. T. W., 1981. Metal Pollution in the Aquatic Environment, 2nd Edn. Springer-Verlag, Heidelberg. 486 pp.

    Google Scholar 

  • Gardiner, J., 1974. The chemistry of cadmium in natural waters-II. The adsorption of cadmium on river muds and naturally occurring solids. Water Res. 8: 157–164.

    CAS  Google Scholar 

  • Gibbs, R. J., 1978. Transport phases of transition metals in the Amazon and Yukon rivers. Bull. Am. Geol. Soc. 88: 829–843.

    Google Scholar 

  • Gjessing, E. T., 1976. Physical and Chemical Characteristics of Aquatic Humus. Ann Arbor Science Publ., Ann Arbor, Michigan.

    Google Scholar 

  • Goltermann, H., 1975. Physiological Limnology. Elsevier, Amsterdam. 489 pp.

    Google Scholar 

  • Greenland, D. J., 1971. Interactions between humic and fulvic acids and clays. Soil Sci. 111: 34–41.

    CAS  Google Scholar 

  • Guy, R. D. & Chakrabarti, C. L., 1976. Studies of metal-organic interactions in model systems pertaining to natural waters. Can. J. Chem. 54: 2600–2611.

    CAS  Google Scholar 

  • Guy, R. D., Chakrabarti, C. L. & Schramm, L. L., 1975. The application of a simple chemical model of natural waters to metal fixation in particulate matter. Can. J. Chem. 53: 661–669.

    CAS  Google Scholar 

  • Guy, R. D., Chakrabarti, C. L. & McBain, D. C., 1978. An evaluation of extraction techniques for the fractionation of copper and lead in model sediment systems. Water Res. 12: 21–24.

    Article  CAS  Google Scholar 

  • Hart, B. T., 1981. Trace metal complexing capacity of natural waters: a review. Environ. Tech. Letts. 2: 95–110.

    CAS  Google Scholar 

  • Harvey, R. W. & Young, L. Y., 1980. Enumeration of particle bound and unattached respiring bacteria in a salt marsh environment. Appl. Environ. Microbiol. 40: 156–160.

    PubMed  Google Scholar 

  • Hassett, J. M., Jennett, J. C. & Smith, J. E., 1980. Heavy metals accumulation by algae. In: Baker, R. A. (Ed.) Contaminants and Sediments, Vol. 2, pp. 409–424. Ann Arbor Science Publ., Ann Arbor.

    Google Scholar 

  • Hesslein, R. H., Broecker, W. S. & Schindler, D. W., 1980. Fates of metal radiotracers added to a whole lake: sedimentwater interactions. Can. J. Fish. aquat. Sci. 37: 378–386.

    CAS  Google Scholar 

  • Hunter, K. A., 1980. Microelectrophoretic properties of natural surface-active organic matter in coastal seawater. Limnol. Oceanogr. 25: 807–822.

    CAS  Google Scholar 

  • Hunter, K. A. & Liss, P. S., 1979. The surface charge of suspended particulates in estuarine and coastal waters. Nature 282: 823–825.

    Article  CAS  Google Scholar 

  • Inniss, W. E. & Mayfield, C. I., 1978. Psychotrophic bacteria in sediments from the Great Lakes. Water Res. 12: 237.

    Google Scholar 

  • Jarvie, A. W. P., Markall, R. J. & Potter, H. R., 1975. Chemical alkylation of lead. Nature 255: 217–218.

    Article  CAS  Google Scholar 

  • Jenne, E. A., 1977. Trace element sorption by sediments ind soils: sites and processes. In: Chapell, W. & Peterson, K. (Eds.) Symposium on Molybdenum on the Environment, Vol. 2, pp. 425–553. M. Dekker, New York.

    Google Scholar 

  • Lean, D. R. S., 1973. Phosphorus dynamics in lake waters. Science 179: 678–680.

    CAS  Google Scholar 

  • Liao, C. F-H. & Lean, D. R. S., 1978. Nitrogen transformations within the trophogenic zone of lakes. J. Fish. Res. Board Can. 35: 1102–1108.

    CAS  Google Scholar 

  • Loeb, G. I. & Neihof, R. A., 1972. Adsorption of an organic film at the platinium-seawater interface. J. mar. Rev. 35: 283–291.

    Google Scholar 

  • Mantoura, R. F. C., 1980. Organo-metallic interactions in natural waters. In: Duursma, E. K. & Dawson, R. (Eds.) Marine Organic Chemistry, pp. 179–223. Elsevier, Amsterdam.

    Google Scholar 

  • McKelvie, I. D., 1980. A study of the sediments of Lake Wellington, Victoria with special reference to zinc. M.App.Sci. thesis, Caulfield Inst. Tech., Caulfield East, Australia. 285 pp.

    Google Scholar 

  • McKnight, D. M. & Morel, F. M. M., 1980. Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25: 62–71.

    CAS  Google Scholar 

  • Murray, J. W., 1975. The interaction of cobalt with hydrous manganese dioxide. Geochim. cosmochim. Acta 39: 635.

    CAS  Google Scholar 

  • Murray, C. N. & Murray, L., 1974. Adsorption-desorption equilibria of some radionuclides in sediment-freshwater and sediment-seawater systems. In: Radioactive Contamination of the Marine Environment, pp. 105–124. Int. Atomic Energy Agency, Vienna.

    Google Scholar 

  • Neihof, R. A. & Loeb, G. I., 1972. The surface charge of particulate matter in seawater. Limnol. Oceanogr. 17: 7–16.

    CAS  Google Scholar 

  • NRC, 1978. An Assessment of Mercury in the Environment. National Research Council, National Academy of Sciences, Washington, DC. 156 pp.

    Google Scholar 

  • Parfitt, R. L., Fraser, A. R. & Farmer, V. C., 1977. Adsorption on hydrous oxides-III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. J. Soil. Sci. 28: 289–296.

    CAS  Google Scholar 

  • Ramamoorthy, S. & Rust, B. R., 1978. Heavy metal exchange processes in sediment-water systems. Environ. Geol. 2: 165–172.

    CAS  Google Scholar 

  • Ramamoorthy, S., Sprinthorpe, S. & Kurshner, D. J., 1977. Competition for mercury between river sediments and bacteria. Bull. Environ. Contam. Toxicol. 17: 505.

    Article  CAS  PubMed  Google Scholar 

  • Rashid, M. A., 1974. Adsorption of metals on sedimentary and peat humic acids. Chem. Geol. 13: 115–123.

    Article  CAS  Google Scholar 

  • Reisinger, K., Stoeppler, M. & Nurnberg, H. W., 1981. Evidence for the absence of biological methylation of lead in the environment. Nature 291: 228–230.

    Article  CAS  Google Scholar 

  • Rendell, P. S., Batley, G. E. & Cameron, A. J., 1980. Adsorption as a control on metal concentrations in sediment extracts. Environ. Sci. Tech. 14: 314–318.

    CAS  Google Scholar 

  • Shaw, D. J., 1969. Electrophoresis. Academic Press, New York. 144 pp.

    Google Scholar 

  • Sholkovitz, E. R. & Copeland, D., 1981. The coagulation, solubility and adsorption properties of iron, manganese, copper, nickel, cadmium, cobalt and humic acids in a river water. Geochim. cosmochim. Acta 45: 181–189.

    Article  CAS  Google Scholar 

  • Stumm, W. & Morgan, J. J., 1981. Aquatic Chemistry, 2nd Edn. John Wiley, Brisbane. 780 pp.

    Google Scholar 

  • Stumm, W., Kummert, R. & Sigg, L., 1980. A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croatica chem. Acta 53: 291–312.

    CAS  Google Scholar 

  • Sunda, W. & Guillard, R. R. L., 1976. The relationship between copper ion toxicity and the toxicity of copper to phytoplankton. J. mar. Res. 34: 511–519.

    CAS  Google Scholar 

  • Templeton, G. D. & Chasteen, N. D., 1980. Evaluation of extraction schemes for organic matter in anoxic estuarine sediments. Mar. Chem. 10: 31–46.

    CAS  Google Scholar 

  • Tipping, E., 1981. The adsorption of aquatic humic substances by iron oxides. Geochim. cosmochim. Acta 45: 191–199.

    CAS  Google Scholar 

  • Tipping, E. & Woof, C., 1981. Forms of iron in the surface waters of Esthwaite Waters, U.K. 2nd Int. Symp. on the Interaction between Sediments and Freshwaters, Queens Univ., Kingston, Ontario. (This volume.)

    Google Scholar 

  • Topping, G. & Davies, I. M., 1981. Methylmercury production in the marine water column. Nature 290: 243–244.

    Article  CAS  Google Scholar 

  • Westall, J. & Hohl, H., 1980. A comparison of electrostatic models for the oxide/solution interface. Adv. Coll. Interface Sci. 12: 265–294.

    Article  CAS  Google Scholar 

  • Wong, P. T. S., Chau, Y. K. & Luxon, P. L., 1975. Methylation of lead in the environment. Nature 253: 263–264.

    Article  CAS  PubMed  Google Scholar 

  • Zabawa, C. F., 1978. Microstructure of agglomerated suspended sediments in northern Chesapeake Bay estuary. Science 202: 49–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, B.T. Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiologia 91, 299–313 (1982). https://doi.org/10.1007/BF02391947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391947

Keywords

Navigation